Theorem 3.4
(Functional equation for
z
e
t
a
)
.
Assuming that:
ξ
(
s
)
=
1
2
s
(
s
−
1
)
π
−
s
∕
2
Γ
(
s
s
)
ζ
(
s
)
for
s
∈
ℂ
Then
ξ
is an entire function and
ξ
(
s
)
=
ξ
(
1
−
s
)
for
s
∈
ℂ
. Hence
π
−
s
∕
2
Γ
(
s
2
)
ζ
(
s
)
=
π
−
1
−
s
2
Γ
(
1
−
s
2
)
ζ
(
1
−
s
)
for
s
∈
ℂ
∖
{
0
,
1
}
.