Theorem 2.2
(Selberg sieve)
.
Assuming that:
z
≥
2
A
⊆
ℤ
finite
P
⊆
ℙ
Assume the sieve hypothesis
h
:
ℕ
→
[
0
,
∞
)
be the multiplicative function supported on square-free numbers, given on the primes by
h
(
p
)
=
{
g
(
p
)
1
−
g
(
p
)
p
∈
P
0
p
∉
P
Then
S
(
A
,
P
,
z
)
≤
|
A
|
∑
d
≤
z
h
(
d
)
+
∑
d
≤
z
2
d
|
P
(
z
)
τ
3
(
d
)
|
R
d
|
.