Theorem
(Sieve of Erastothenes – Legendre)
.
Assuming that:
A
⊆
[
1
,
x
]
∩
ℕ
2
≤
z
≤
x
Assume the Sieve Hypothesis
Then
S
(
A
,
P
,
z
)
=
|
A
|
∏
p
≤
2
p
∈
P
(
1
−
g
(
p
)
)
+
O
(
x
1
2
(
log
x
)
1
2
2
−
log
x
4
log
z
(
∑
d
≤
x
d
|
P
(
z
)
|
R
d
|
2
)
1
2
+
|
A
|
e
log
x
log
z
∏
p
≤
z
p
∈
P
(
1
+
g
(
p
)
)
e
)