Definition 1.1 (Big O and little o notation). Let f,g,h:S, S.

Write f(x)=O(g(x)) if there is c>0 such that |f(x)|c|g(x)| for all xS.

Write f(x)=o(g(x)) if for any 𝜀>0 there is x𝜀>0 such that |f(x)|𝜀|g(x)| for xS, |x|x𝜀.

Write f(x)=g(x)+O(h(x)) if f(x)g(x)=O(h(x)) and write f(x)=g(x)+o(h(x)) if f(x)g(x)=o(h(x)).