Definition 1.1 (Big O and little o notation). Let f,g,h:S→ℂ, S⊆ℂ.
Write f(x)=O(g(x)) if there is c>0 such that |f(x)|≤c|g(x)| for all x∈S.
Write f(x)=o(g(x)) if for any 𝜀>0 there is x𝜀>0 such that |f(x)|≤𝜀|g(x)| for x∈S, |x|≥x𝜀.
Write f(x)=g(x)+O(h(x)) if f(x)−g(x)=O(h(x)) and write f(x)=g(x)+o(h(x)) if f(x)−g(x)=o(h(x)).