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What is analytic number theory?

• Study of number-theoretic problems using analysis (real, complex, Fourier, …)

• Also tools from combinatorics, probability, …

What kind of problems are studied?

A variety of problems about integers, especially primes.

• Are there infinitely many primes? (Euclid, 300BC)

• Are there infinitely many primes starting with 7 in base 10? (follows from prime number theorem)

• Are there infinitely many primes ending with 7 in base 10? (follows from Dirichlet’s theorem)

• Are there infinitely many primes with 49% of the digits being 7 in base 10? would follow from
the Riemann hypothesis

• Are there infinitely many pairs of primes differing by 2? (twin prime conjecture)

Key feature: To show that a set (of primes) is infinite, want to estimate the number of elements ≤ x.

Definition. Define
π(x) = |{primes ≤ x}| =

∑
p≤x

1.

Euclid showed: limx→∞ π(x) = ∞.

Theorem (Prime number theorem).

lim
x→∞

π(x) log x

x
= 1.

π(x) ∼ x
log x . (Conjectured: Legendre, Gauss. Proved: Hadamard, de la Vallée Poussin)
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1 Estimating Primes

Theorem (Euler).
∑

p
1
p = ∞.

Proof. Consider pN =
∏N

p

(
1 + 1

p + 1
p2 + · · ·+ 1

pN

)
, for N ∈ N = {1, 2, 3, . . .}. We have:

pN ≥
N∑

n=1

1

n

≥
N−1∑
n=1

∫ n+1

n

dt

t

=

∫ N−1

1

dt

t

= log(N − 1)

On the other hand, using 1 + x ≤ ex, so

pN ≤
∏
p≤N

exp

(
1

p
+

1

p2
+ · · ·+ 1

pN

)

= exp

∑
p≤N

(
1

p
+

1

p2
+ · · ·+ 1

pN

)
≤ exp

∑
p≤N

(
1

p
+

1

p2 − p

)
≤ exp

C +
∑
p≤N

1

p


Comparing these two bounds gives ∑

p≤N

1

p
≥ log log(N − 1)− C.

Then letting N → ∞ gives the desired result.

Theorem (Chebyshev’s Theorem).

π(x) ≤ cx

log x
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(for x ≥ 2, where c is an absolute constant).

Proof. Consider

SN =

(
2N

N

)
=

(2N)!

(N !)2

for N ∈ N. We have

SN ≤
2N∑
j=0

(
2N

j

)
= (1 + 1)2N = 4N .

On the other hand,
SN =

∏
p≤2N

pα
p(N)

where αp(N) is the largest j such that pj |
(
2N
N

)
. We have αp(N) = 1 for p ∈ (N, 2N ]. So

(log 4)N ≥
∑

N<p≤2N

log p.

Take N =
⌈
x
2

⌉
, for x ≥ 2. Hence∑

x<p≤2x

log p ≤ (log 4)
⌈x
2

⌉
+ log x ≤ (log 4)

x

2
+ log 4 + log x.

Then ∑
p≤x

≤
∑

0≤j≤ log x
log 2

(
(log 4)

x

2j+2
+ log x

)
(telescoping summation, take x

2
,
x

22
,
x

23
, . . .)

≤ (log 4)x+ (log x)2 + 1

Lecture 2

So for x ≥ 2 and a suitable large enough constant c′, we have∑
p≤x

≤ (log 4)x+ c′(log x)2.
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Hence ∑
x

(log x)2
<p≤x

log p ≤ (log 4)x+ c′(log x)2

=⇒ log
x

(log x)2

(
π(x)− π

(
x

(log x)2

))
≤ (log 4)x+ c′(log x)2

=⇒ π(x) ≤ x

(log x)2
+ (log 4)

x

log x
(log x)2

+ c′
(log x)2

log x
(log x)2

≤ (log 4 + ε)
x

log x

for any ε, as long as x ≥ x(ε).

Take ε = 1. Choose c > 0 large enough.

1.1 Asymptotic Notation

Definition 1.1 (Big O and little o notation). Let f, g, h : S → C, S ⊆ C.
Write f(x) = O(g(x)) if there is c > 0 such that |f(x)| ≤ c|g(x)| for all x ∈ S.
Write f(x) = o(g(x)) if for any ε > 0 there is xε > 0 such that |f(x)| ≤ ε|g(x)| for x ∈ S,
|x| ≥ xε.
Write f(x) = g(x) + O(h(x)) if f(x) − g(x) = O(h(x)) and write f(x) = g(x) + o(h(x)) if
f(x)− g(x) = o(h(x)).

Definition 1.2 (Vinogradov notation). Let f, g, h : S → C, S ⊆ C.
Write f(x) � g(x) or g(x) � f(x) if f(x) = O(g(x)).

Example.

• (log x)100 � exp(
√
log x) � x

1
100 (x ≤ 1), since limx→∞

(log x)100

exp(
√
log x)

= 0,

limx→∞
exp(

√
log x)

x
1

100
= 0.

• 100x+ 100 � x � x
100 (for x ≥ 1).

• ex = 1 + x+O(x2) for x ∈ [−10, 10], since ex = 1 + x+
∑∞

n=2
xn

n! .

• bxc = x+O(1) for x ∈ R (since bxc ∈ (x− 1, x]).

• x+1
x = 1 + o(1) (for x ≥ 1).

5



Lemma. Let f, g, h, u : S → C.

(i) If f(x) = O(g(x)) and g(x) = O(h(x)), then f(x) = O(h(x)) (transitivity).

(ii) If f(x) = O(h(x)) and g(x) = O(u(x)), then f(x) + g(x) = O(|h(x)|+ |u(x)|).

(iii) If f(x) = O(h(x)) and g(x) = O(u(x)), then f(x)g(x) = O(h(x)u(x)).

Proof. Follows from the definition in a straightforward way. Example:

(iii) |f(x)| ≤ c1|h(x)|, |g(x)| ≤ c2|u(x)|. Then |f(x)g(x)| ≤ c1c2|h(x)u(x)|, so f(x)g(x) = O(h(x)u(x)).

1.2 Partial Summation

Lemma 1.3 (Partial Summation). Assuming that:

• (an)n∈N are complex numbers

• x ≥ y ≥ 0

• f : [y, x] → C is continuously differentiable

Then ∑
y<n≤x

anf(n) = A(x)f(x)−A(y)f(y)−
∫ x

y

A(t)f ′(t)dt,

where for t ≥ 1, we define

A(t) =
∑
n≤t

an =

btc∑
n=1

an.

Proof. It suffices to prove the y = 0 case, since then∑
y<n≤x

anf(n) =
∑

0<n≤x

anf(n)−
∑

0<n≤y

anf(n).

Suppose y = 0. By the fundamental theorem of calculus,

f(n) = f(x)−
∫ x

n

f ′(t)dt =

∫ x

0

f ′(t)1[n,x](t)dt.
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Summing over n ≤ x, we get

∑
n≤x

anf(n) = A(x)f(x)−
∫ x

0

f ′(t)

∑
n≤x

1[n,x](t)an

 dt

= A(x)f(x)−
∫ x

0

f ′(t)A(t)dt

Lecture 3

Lemma. If x ≥ 1, then ∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
,

where γ ∈ R is Euler’s constant, which is given by γ = limN→∞
∑N

k=1
1
k − logN .

Proof. Apply Partial Summation with an = 1, f(t) = 1
t , y = 1

2 . Clearly A(t) = btc. Then,

∑
n≤x

1

n
=

bxc
x

+

∫ x

1

btc
t2

dt

=
x+O(1)

x
+

∫ x

1

t− {t}
t2

dt

= 1 +O

(
1

x

)
+ log x−

∫ x

1

{t}
t2

dt

= 1 + log x−
∫ ∞

1

{t}
t2

dt+O

(
1

x

)
The last equality is true since

∫∞
x

{t}
t2 dt ≤

∫∞
x

1
t2 dt =

1
x .

Let γ = 1−
∫∞
1

{t}
t2 dt. Then we have the asymptotic equation as desired.

Taking x → ∞ in the formula, we see that γ is equal to the formula for Euler’s constant, as desired.

Lemma. For x ≥ 1, ∑
p≤x

1

p
=

∫ x

1

π(t)

t2
dt+O(1).

Proof. Apply Lemma 1.3 with an = 1P(n) (where P is the set of primes), f(t) = 1
t , and y = 1.
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We get A(t) = π(t), and then ∑
p≤x

1

p
=

π(x)

x
+

∫ x

1

π(t)

t2
dt

=

∫ x

1

π(t)

t2
dt+O(1)

1.3 Arithmetic Functions and Dirichlet convolution

Definition (Arithmetic function). An arithmetic function is a function f : N → C.

Definition (Multiplicative). An arithmetic function f is multiplicative if f(1) = 1 and f(mn) =
f(m)f(n) whenever m,n ∈ N are coprime.
Moreover, f is completely multiplicative if f(mn) = f(m)f(n) for all m,n.

Example.

• f(n) = ns for s ∈ C is completely multiplicative.

• Möbius function

µ(n) =


1 n = 1

(−1)k if n is a product of k distinct primes
0 n is divisible by a square of a prime

This is multiplicative:

– If µ(mn) = 0 and m, n are coprime, then we must have had at least one of µ(m) = 0
or µ(n) = 0.

– If µ(mn) = 1, then say m is a product of k distinct primes and n is a product of l
distinct primes. Then µ(mn) = (−1)k+l = (−1)k(−1)l = µ(m)µ(n).

– τ(n) =
∑

n=ab 1 (divisor function) and τk(n) =
∑

n=n1n2···nk
1 (generalised divisor

function). τ and τk are multiplicative.

On the space of arithmetic functions, we have operations:

(f + g)(n) = f(n) + g(n)

(fg)(n) = f(n)g(n)

(f ∗ g)(n) = Dirichlet convolution
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Definition (Dirichlet convolution). For f, g : N → C, we define

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
,

where
∑

d|n means sum over the divisors of n.

Lemma 1.4. The space of arithmetic functions with operations +, ∗ is a commutative ring.

Proof. Since arithmetic functions with + form an abelian group, it suffices to show:

(i) (f ∗ g) ∗ h = f ∗ (g ∗ h)

(ii) f ∗ g = g ∗ f

(iii) f ∗ I = f

(iv) f ∗ (g + h) = f ∗ g + f ∗ h

Proofs:

(i) Follows from (f ∗ g)(n) =
∑

n=ab f(a)g(b).

(ii) Follows from (f ∗ g)(n) =
∑

n=ab f(a)g(b).

(iii) Take

I(n) =

{
1 n = 1

0 n 6= 0
.

Then one can check that f ∗ I = f .

(iv) From definition.

Lemma. The set of arithmetic functions f with f(1) 6= 0 form an abelian group with operation
∗.

Proof. Need g such that f ∗ g = I.

(f ∗ g)(1) = f(1)g(1) = 1 =⇒ g(1) =
1

f(1)
.
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Assume g(m) defined for m < n. We will defined g(n).

(f ∗ g)(n) = g(n)f(1) +
∑
d|n
d6=1

f(d)g
(n
d

)

=⇒ g(n) = − 1

f(1)

∑
d|n
d 6=1

f(d)g
(n
d

)
︸︷︷︸
<n

Lecture 4

Lemma. Multiplicative arithmetic functions form an abelian group with ∗. Moreover, for
completely multiplicative f , the Dirichlet inverse is µf .

Proof. For the first part, suffices to show closedness. Let f, g : N → C be multiplicative, and m,n
coprime.

If mn = ab, we can write a = a1a2, b = b1b2 where a1 = (a,m), a2 = (a, n), b1 = (b,m) and b2 = (b, n).
Therefore we have:

(f ∗ g)(mn) =
∑

mn=ab

f(a)g(b)

=
∑

m=a1b1
n=a2b2

f(a1a2)g(b1b2) (above observation)

=
∑

m=a1b1
n=a2b2

f(a1)f(a2)g(b1)g(b2) (by multiplicativity)

= (f ∗ g)(m)(f ∗ g)(n)

(also need to check that inverses are multiplicative).

Now, remains to show that for completely multiplicative f , f ∗ µf = I.

Note that f ∗ µf is multiplicative by the first part. So enough to show (f ∗ µf)(pk) = I(pk) for prime
powers pk. Calculate:

f ∗ µf(p) = f(p) + µf(p)

= f(p)− f(p)

= 0

= I(p)
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and for k ≥ 2:

f ∗ µf(pk) = f(pk) + µf(p)f(pk−1)

= f(pk)− f(p)f(pk−1)

= f(p)k − f(p)f(p)k−1

= 0

= I(pk)

Example. τk(n) =
∑

n=n1···nk
1. Then

τk = 1 ∗ 1 ∗ · · · ∗ 1︸ ︷︷ ︸
k times

.

So τk is multiplicative by the previous result.

Definition (von Mangoldt function). The von Mangoldt function Λ : N → R is

Λ(n) =

{
log p if n = pk for some prime p

0 otherwise

Then log = 1 ∗ Λ since

log n = log
∏
p|n

pαp(n) =
∑
p|n

αp(n) log p = 1 ∗ Λ(n).

Since µ is the inverse of 1, we have

log ∗µ = 1 ∗ Λ ∗ µ = Λ ∗ 1 ∗ µ = Λ ∗ I = Λ.

1.4 Dirichlet Series

For a sequence (an)n∈N, we want to associate a generating function that gives information of (an)n∈N.
Might consider

(an)n∈N ↔
∞∑

n=1

anx
n.

If we do this, then
∑

p x
p is hard to control. So this is not very useful.

The following series has nicer number-theoretic properties:
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Definition (Formal series). For f : N → C, define a (formal) series

Df (s) =

∞∑
n=1

f(n)n−s

for s ∈ C.

Lemma. Assuming that:

• f : N → C satisfying |f(n)| ≤ no(1)

Then Df (s) converges absolutely for Re(s) > 1 and defines an analytic function for Re(s) > 1.

Proof. Let ε > 0 (fixed), n ∈ N and Re(s) > 1 + 2ε.

Then
∞∑

n=N

|f(n)n−s| =
∞∑

n=N

|f(n)|n−Re(s)

�
∞∑

n=N

nε−Re(s)

≤
∞∑

n=N

n−1−ε

≤ N−1−ε +

∞∑
n=N+1

∫ n

n−1

t−1−εdt

≤ N−1−ε +

∫ ∞

N

t−1−εdt

� N−ε

Hence we have absolute convergence for Re(s) > 1+2ε. Also, Df (s) is a uniform limit of the functions∑N
n=1 f(n)n

−s. From complex analysis, a uniform limit of analytic functions is analytic. Hence Df (s)
is analytic for Re(s) > 1 + 2ε.

Now let ε → 0.

Lecture 5

Theorem (Euler product). Assuming that:

• f : N → C be bounded (|f(n)| � 1) and multiplicative
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Then
Df (s) =

∏
p

(
1 +

f(p)

p2
+

f(p2)

p2s
+ · · ·

)
,

for Re(s) > 1. Furthermore, if f is completely multiplicative, then

Df (s) =
∏
p

(
1− f(p)

ps

)−1

,

for Re(s) > 1.

Proof. Let N ∈ N, Re(s) = σ > 1. Let

Df (s,N) =
∏
p≤N

(
1 +

f(p)

ps
+

f(p2)

p2s
+ · · ·

)
.

Note that the series defining the factors are absolutely convergent, since
∞∑
k=1

|f(pk)|
|pks|

�
∞∑
k=1

1

pks
< ∞

(geometric series).

Therefore, multiplying out,

Df (s,N) =

∞∑
n=1

a(n,N)f(n)n−s

where

a(n,N) = #{ways to write n as a product of prime powers, where the primes are ≤ N}.

The fundamental theorem of arithmetic tells us that a(n,N) ∈ {0, 1} and a(n,N) = 1 for n ≤ N .

Now,

|Df (S)−Df (s,N)| ≤
∞∑

n=N+1

|f(n)||n−s|

�
∞∑

n=N+1

n−σ

N→∞−→ 0

(since
∑∞

n=1 n
−σ < ∞). Hence Df (s) = limN→∞ Df (s,N).

Finally, for f completely multiplicative, use geometric formula:
∞∑
k=1

f(p)k

pks
=

1

1− f(p)
ps

.
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Lemma. Assuming that:

• f, g : N → C

• |f(n)|, |g(n)| ≤ no(1)

Then
Df∗g(s) = Df (s)Dg(s)

for Re(s) > 1.

Proof. We know Df (s) and Dg(s) are absolutely convergent, so can expand out the product.

Df (s)Dg(s) =

∞∑
a,b=1

f(a)g(b)(ab)−s =

∞∑
n=1

∑
n=ab

f(a)g(b)n−s

=

∞∑
n=1

(f ∗ g)(n)n−s

= Df∗g(s)

Definition (Riemann zeta function). For Re(s) > 1, define

ζ(s) =

∞∑
n=1

n−s.

Example.

•
∑∞

n=1
τ(n)
ns = ζ(s)2 for Re(s) > 1 (since τ = 1 ∗ 1).

•
∑∞

n=1
µ(n)
ns = 1

ζ(s) for Re(s) > 1 (since µ is the Dirichlet inverse of 1, so µ ∗ 1 = I).

• ζ ′(s) = −
∑∞

n=1
logn
ns for Re(s) > 1, since d

dsn
−s = −(log n)n−s. Can differentiate

termwise, since if Fn analytic and Fn → F uniformly, then F is analytic and F ′
n → F ′.

We know that
∑∞

n=1 f(n)n
−s converges uniformly for Re(s) > 1 if |f(n)| ≤ no(1).

• ζ′(s)
ζ(s) = −

∑∞
n=1

Λ(n)
ns for Re(s) > 1. This is because − log = −1 ∗ Λ – see the definition of

the von Mangoldt function.

Dirichlet hyperbola method

Problem: How many lattice points (a, b) ∈ N2 satisfy ab ≤ x?

14



Note that this number is
∑

n≤x τ(n) =
∑

ab≤x 1.

Dirichlet proved that for x ≥ 2,∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O(x1/2)

where γ is Euler’s constant.

We will see a proof of this shortly.

Conjecture: Can have Oε(x
1
4+ε). Current best exponent is 0.314.

First, we prove a lemma:

Lemma (Dirichlet hyperbola method). Assuming that:

• f, g : N → C

• x ≥ y ≥ 1

Then ∑
n≤x

(f ∗ g)(n) =
∑
d≤y

f(d)
∑
m≤ x

d

g(m) +
∑
m≤ x

y

g(m)
∑

y<d≤ x
m

f(d).

Proof.
∑

n≤x(f ∗ g)(n) =
∑

dm≤x f(d)g(m). Split this sum into parts with d ≤ y and d > y to get the
conclusion.

Lecture 6
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Theorem 1.5 (Dirichlet’s divisor problem). For x ≥ 2,∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O(x1/2)

where γ is Euler’s constant.

Proof. We use the Dirichlet hyperbola method, with y = x
1
2 . Note that τ = 1 ∗ 1. Then,∑

n≤x

τ(n) =
∑
d≤x

1
2

∑
m≤ x

d

1 +
∑

m≤x
1
2

∑
x

1
2 <d≤ x

m

1

=
∑

x≤x
1
2

(x
d
+O(1)

)
+
∑

m≤x
1
2

( x

m
− x

1
2 +O(1)

)
= x

∑
d≤x

1
2

1

d
+ x

∑
m≤x

1
2

1

m
−
∑

m≤x
1
2

x
1
2 +O(x

1
2 )

Recall from Lecture 2 that ∑
d≤y

1

d
= log y + γ +O

(
1

y

)
.

Taking y = x
1
2 , the previous expression becomes

2×
(
1

2
log x+ γ +O

(
1

x
1
2

))
− x+O(x

1
2 ) = x log x+ (2γ − 1)x+O(x

1
2 ).
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2 Elementary Estimates for Primes

Recall from Lecture 1:

•
∑

p
1
p = ∞ (Euler’s Theorem)

• π(x) � x
log x (Chebyshev’s Theorem)

2.1 Merten’s Theorems

Theorem 2.1 (Merten’s Theorem). Assuming that:

• x ≥ 3

Then

(i)
∑

p≤x
log p
p = log x+O(1)

(ii)
∑

p≤x
1
p = log log x+M +O

(
1

log x

)
(for some M ∈ R)

(iii)
∏

p≤x

(
1− 1

p

)
= c+o(1)

log x (for some c > 0)

Remark. Can show c = e−γ .

Proof.

(i) Let N = bxc. Consider N !. We have

NN ≤ NN

N ! ≥ NNe−N

(the second inequality cn be proved by induction, using
(
1 + 1

N

)N ≤ e).
Let vp(k) be the largest power of p dividing k. Then

N ! =
∏
p≤N

pvp(N !) (fundamental theorem of arithmetic)

=⇒ logN ! =
∑
p≤N

vp(N !) log p

17



We have vp(N !) =
∑∞

j=1

⌊
N
pj

⌋
. Indeed,

vp(N !) =

N∑
k=1

vp(k)

=

N∑
k=1

∞∑
j=1

1vp(k)≥j

=

∞∑
j=1

N∑
k=1

1vp(k)≥j

=

∞∑
j=1

⌊
N

pj

⌋
Now,

logN ! =
∑
p≤N

⌊
N

p

⌋
log p+

∑
p≤N

(log p)

∞∑
j=2

⌊
N

pj

⌋

=
∑
p≤N

(
N

p
+O(1)

)
log p+O

∑
p≤N

log p

p2
·N

 (geometric series)

= N
∑
p≤N

log p

p
+ O

∑
p≤N

log p


︸ ︷︷ ︸

≤(logN)π(N)�N(Chebyshev)

+O(N) (since
∑
p

log p

p2
< ∞)

= N
∑
p≤N

log p

p
+O(N)

Combine with logN ! = N logN +O(N) to get

N logN +O(N) = N
∑
p≤N

log p

p
+O(N).

Divide by N to get the result.

(ii) By Partial Summation, this is

1 +O

(
1

log x

)
+

∫ x

2

∑
p≤t

log p
p

t(log t)2
dt.

Writing ε(t) =
∑

p≤t
log p
p − log t, we get

1 +O

(
1

log x

)
+

∫ x

2

dt

t log t
+

∫ x

2

ε(t)

t(log t)2
dt

= 1 +O

(
1

log x

)
+ log log x− log log 2 +

∫ ∞

2

ε(t)

t(log t)2
dt+O

(∫ ∞

x

|ε(t)|
t(log t)2

dt

)

18



By part (i), ∫ ∞

x

|ε(t)|
t(log t)2

dt

�
∫ ∞

x

1

t(log t)2
dt

� 1

log x

Take M = 1− log log 2 +
∫∞
2

ε(t)
t(log t)2 dt.

(iii) Use Taylor expansion

log(1− y) = −
∞∑
j=1

yj

j

to get

log
∏
p≤x

(
1− 1

p

)
=
∑
p≤x

log

(
1− 1

p

)

= −
∑
p≤x

1

p
−
∑
p≤x

∞∑
j=2

p− j

j

Write H =
∑

p

∑∞
j=2

p−j
j . We get

= −
∑
p≤x

1

p
−H +O


∑
p>x

∞∑
j=2

p− j

j︸ ︷︷ ︸
�p−2


= −

∑
p≤x

1

p
−H +O

(
1

x

)
(ii)
= − log log x−H +O

(
1

x

)
Taking exponentials, ∏

p≤x

(
1− 1

p

)
=

c+ o(1)

log x
.

Lecture 7

2.2 Sieve Methods

• General tools for estimating the number of primes (or products of a few primes in a set).

• Need information on the distribution of the set in residue classes.
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Definition (Sieve problem). Let P ⊆ P. Let

P (z) =
∏
p∈P
p≤z

p,

and let A ⊆ Z. Denote
S(A,P, z) = |{n ∈ A : (n, P (z)) = 1}|.

Problem: Estimate S(A,P, z).

Note that if A ⊆
[
x
2 , x
]
∩ Z,

S(A,P, x
1
2 ) = |A ∩ P|

S(A,P, x
1
3 ) = |A ∩ (P ∪ {p1p2 : p1p2 > x

1
3 })|

Sieve hypothesis: There exists a multiplicative g : N → [0, 1] and Rd ∈ R such that

|{n ∈ A : n ≡ 0 (mod d)}| = g(d)|A|+Rd

for all square-free d (no repeated prime factors).

Example.

• A = [1, x], P = P.
|Ad| =

⌊x
d

⌋
=

x

d
+O(1)

Then g(d) = 1
d , |Rd| � 1.

S(A,P, x
1
2 ) = |{p ∈ P : p ∈ [x

1
2 , x]}| = π(x) +O(x

1
2 ).

• A = {n(n+ 2) : n ≤ x}, P = P. Let d = p1 · · · pr, where pi are distinct primes. Then

|Ad| = |{n ≤ x : n ≡ 0 or − 2 (mod pi)∀i ≤ r}|

=

{
2r

d x if d odd
2r−1

d x+O(2r) if d even

(by Chinese Remainder Theorem).

S(A,P, (2x)
n
2 ) = |{p ∈ ((2x)

1
2 , x] : p+ 2 ∈ P}|

= |{p ≤ x : p+ 2 ∈ P}|+O(x
1
2 )

Here,

g(p) =

{
1
p p = 2
2
p p > 2

and Rd = O(2w(d)), where w(d) is the number of prime factors of d (distinct).
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Lemma. We have
S(A,P, z) =

∑
d|P (z)

µ(d)|Ad|.

Proof. Recall that
1n=1 = (µ ∗ 1)(n)

(since µ is the inverse of 1). Hence,

S(A,P, z) =
∑
n∈A

1(n,P (z))=1

=
∑
n∈A

∑
d|P (z)
d|n

µ(d)

=
∑

d|P (z)

µ(a)|Ad|

Example. Let
π(x, z) = |{n ≤ x : (n, P (z)) = 1}|.

Let P = P. Let A = [1, x] ∩ Z. Then

|Ad| =
x

d
+O(1).

By the previous lemma,

π(x, z) = S(A,P, z)

=
∑

d|P (z)

µ(d)
(x
d
+O(1)

)

= x
∑

d|P (z)

µ(d)

d
+O

 ∑
d|P (z)

|µ(d)|︸ ︷︷ ︸
≤1


= x

∑
d|P (z)

µ(d)

d
+O(2π(z)) P (z) = p1 · · · pπ(2)

= x
∏
p≤z

1 +
µ(p)

p︸ ︷︷ ︸
−1

+O(2π(2)) fundamental theorem of arithmetic

=
c+ o(1)

log z
x+O(2z) Merten’s theorem, for some c > 0
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For 2 ≤ z ≤ log x,

π(x, z) =
c+ o(1)

log z
x.

Theorem (Sieve of Erastothenes – Legendre). Assuming that:

• A ⊆ [1, x] ∩ N

• 2 ≤ z ≤ x

• Assume the Sieve Hypothesis

Then

S(A,P, z)

= |A|
∏
p≤2
p∈P

(1− g(p)) +O

x
1
2 (log x)

1
2 2−

log x
4 log z

 ∑
d≤x

d|P (z)

|Rd|2


1
2

+ |A|e
log x
log z

∏
p≤z
p∈P

(1 + g(p))e


Lecture 8

Proof. Recall from previous lecture that

S(A,P, z) =
∑

d|P (z)
d≤x

µ(d)|Ad| (since Ad = ∅ for d > x)

=
∑

d|P (z)
d≤x

µ(d)g(d)|A|+O

 ∑
d≤x

d|P (z)

|Rd|

 (sieve hypothesis)

= |A|
∑

d|P (z)

µ(d)g(d) +O

 ∑
d≤x

d|P (z)

|Rd|+ |A|
∑

d|P (z)
d>x

g(d)



= |A|
∏
p≤z
p∈P

(1− g(p)) +O

 ∑
d≤x

d|P (z)

|Rd|+ |A|
∑

d|P (z)
d>x

g(d)


We estimate the first error term using Cauchy-Schwarz:

∑
d≤x

d|P (z)

|Rd| ≤

 ∑
d≤x

d|P (z)

|Rd|2


1
2
 ∑

d≤x
d|P (z)

1


1
2

.
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Note that if d | P (z), d > x
1
2 , then

ω(d) ≥ log x
1
2

log z
,

(ω(d) – number of distinct prime factors of d), since zω(d) ≥ d ≥ x
1
2 .

Hence, 2ω(d) ≥ 2
log x
2 log z , d | P (z), d > x

1
2 .

Now we get ∑
d≤x

d|P (z)

1 ≤ 2−
log x
2 log z

∑
d≤x

d|P (z)

2ω(d)︸ ︷︷ ︸
=τ(d)

≤ 2−
log x
2 log z

∑
d≤x

τ(d)

� 2−
log x
2 log z x log x

(the last step is by Dirichlet’s divisor problem:
∑

d≤x τ(d) = (1 + o(1)) · x log x).

Substituting this in, the first error term becomes as desired.

Now we estimate the second error term. We have∑
d|P (z)
d>x

g(d) ≤ x− 1
log z

∑
d|P (z)

g(d)d
1

log z (since d > x in the sum: Rankin’s trick)

= x− 1
log z

∏
p≤z
p∈P

(1 + g(p) p
1

log z︸ ︷︷ ︸
≤z

1
log z =e

)

≤ x− 1
log z

∏
p≤z
p∈P

(1 + eg(p))

≤ x− 1
log z︸ ︷︷ ︸

=e
− log x

log z

∏
p≤z
p∈P

(1 + g(p))e (1 + ey ≤ (1 + y)e)

Combining the error terms, the claim follows.

Example. Take A = [1, x] ∩ Z, P = P. Then g(d) = 1
d , Rd = O(1), so the sieve gives us

S(A,P, z) = π(x, z)

= (x+O(1))
∏
p≤z

(
1− 1

p

)

+O

x
1
2 (log x)

1
2 2−

log x
4 log z x

1
2 + (x+O(1))e−

log x
log z

∏
p≤z

(
1 +

1

p

)e
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By Merten’s Theorem, ∏
p≤z

(
1− 1

p

)
=

C + o(1)

log z∏
p≤z

(
1 +

1

p

)
≤
∏
p≤z

(
1− 1

p

)−1

=

(
1

C
+ o(1)

)
log z

Hence,

π(x, z) =
c+ o(1)

log z
+O

(
x(log x)

1
2 2−

log x
4 log z + xe−

log x
log z (log z)e

)
.

Hence, for 2 ≤ z ≤ exp
(

log x
10 log log x

)
,

π(x, z) =
c+ o(1)

log z
x.

This asymptotic in fact holds for z ≤ xo(1).
In particular, the Erastothenes-Legendre sieve gives

π(x) ≤ π(x, z) + z � x

log x
log log x

for z = exp
(

log x
10 log log x

)
. Not quite the Chebyshev bound π(x) � x

log x .

Lecture 9

2.3 Selberg Sieve

asymptotes good upper bound for primes
Erastothenes-Legendre 3 7

Selberg 7 3

Theorem 2.2 (Selberg sieve). Assuming that:

• z ≥ 2

• A ⊆ Z finite

• P ⊆ P

• Assume the sieve hypothesis
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• h : N → [0,∞) be the multiplicative function supported on square-free numbers, given on
the primes by

h(p) =

{
g(p)

1−g(p) p ∈ P
0 p /∈ P

Then
S(A,P, z) ≤ |A|∑

d≤z h(d)
+
∑
d≤z2

d|P (z)

τ3(d)|Rd|.

Sieve hypothesis: There is a multiplicative g : N → [0, 1] and Rd ∈ R such that

|Ad| = g(d)|A|+Rd

for all square-free d ≥ 1.

Proof. Let (ρd)d∈N be real numbers with

ρ1 = 1, ρd = 0, d > z (∗)

Then,

1(n,P (z))=1 ≤

 ∑
d|n

d|P (z)

ρd


2

.

(If (n, P (z)) = 1, get 1 ≤ ρ otherwise use 0 ≤ x2).

Summing over n ∈ A,

S(A,P, z) =
∑
n∈A

1(n,P (z))=1

≤
∑
n∈A

 ∑
d|n

d|P (z)

ρd


2

=
∑

d1d2|P (z)

ρd1
ρd2

∑
n∈A

[d1,d2]|n

1

= |A|
∑

d1,d2|P (z)

ρd1
ρd2

g([d1, d2]) +
∑

d1,d2|P (z)

ρd1
ρd2

R[d1,d2]︸ ︷︷ ︸
E

(sieve hypothesis)

([m,n] means lcm(m,n)).
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We first estimate E:

E ≤ max
k

|ρk|2
∑

d1,d2|P (z)

|R[d1,d2]|

= max
k

|ρk|2
∑
d≤zk

d|P (z)

∑
d1,d2∈N
[d1,d2]=d

|Rd| (d = [d1, d2])

We have ∑
d1,d2∈N
d=[d1,d2]

1 =
∑
l≤z

∑
d′
1,d

′
2∈N

d=ld′
1d

′
2

(d′
1,d

′
2)=1

1 (l = (d1, d2), d
′
1 = d1/l, [d1, d2] = ld′1d

′
2)

≤ τ3(d)

Therefore
E ≤

∑
d≤zz

d|P (z)

τ3(d)|Rd| ·max
k

|ρk|2.

Now it suffices to prove that there is a choice of (ρd)d∈N satisfying (∗) such that

Claim 1:
∑

d1,d2|P (z) ρd1
ρd2

g([d1, d2]) =
1∑
d≤z

h(d).

Claim 2: |ρk| ≤ 1 for all k ∈ N.

Proof of claim 1:

We have, writing k = (d1, d2), d′i = di

k ,∑
d1,d2|P (z)

ρd1
ρd2

g([d1, d2]) =
∑

k|P (z)

µ(k)2
∑

d′
1,d

′
2|

P (z)
k

(d′
1,d

′
2)=1

ρkd′
1
ρkd′

2
g(kd′1d

′
2)

=
∑

k|P (z)

µ(k)2g(k)
∑

d′
1,d

′
2|

P (z)
k

(d′
1,d

′
2)=1

ρkd′
1
ρkd′

2
g(d′1)g(d

′
2) (multiplicativity)

We have
1(d′

1,d
′
2)=1 =

∑
c|d′

1

c|d′
2

µ(c)
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(since µ ∗ 1 = I) so the previous expression becomes∑
k|P (z)

µ(k)2g(k)
∑

c|P (z)
k

µ(c)
∑

d′
1,d

′
2|P (z)

d′
1≡0 (mod ()c)

d′
2≡0 (mod c)

ρkd′
1
ρkd′

2
g(d′1)g(d

′
2)

=
∑

k|P (z)

µ(k)2g(k)
∑

c|P (z)
k

µ(k)

 ∑
d|P (z)

k

d≡0 (mod c)


2

=
∑

k|P (z)

µ(k)2g(k)−1
∑

c|P (z)
k

µ(c)

 ∑
d′|P (z)

ck

ρckd′g(ckd′)


2

=
∑
n≤z

h(m)−1

 ∑
d|P (z)

d≡0 (mod n)

ρdg(d)


2

(multiplicativity, d = cd′, m = ck, d = md′) since 1
h = µ2

g ∗ µ (check on primes 1
h(p) =

1
g(p) − 1).

Now we get ∑
d1,d2|P (z)

ρd1ρd2g([d1, d2]) =
∑
m≤z

h(m)−1ζ2m

where
ζm =

∑
d|P (z)

d≡0 (mod m)

ρdg(d).

Want to minimise this subject to (∗).Lecture 10

We need to translate the condition ρ1 = 1. Note that∑
m≤z

m≡0 (mod c)

µ(m)ζm =
∑

d|P (z)

ρdg(d)
∑
m|d
c|m

µ(m)

︸ ︷︷ ︸∑
m′| d

c
µ(c)µ(m′)=µ(d)1d=e

= µ(e)ρeg(e)

Hence,

ρe =
µ(e)

g(e)

∑
m≤2

m≡0 (mod c)

µ(m)ζm.

Now,
ρ1 = 1 =

∑
m≤z

µ(m)ζm.
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By Cauchy-Schwarz, we then get∑
m≤z

h(m)−1ζ2m

∑
m≤z

µ(m)2h(m)

 ≥

∑
m≤z

µ(m)ζm

2

= 1.

Hence ∑
m≤z

h(m)−1ζ2m ≥ 1∑
m≤z µ(m)2h(m)

=
1∑

m≤z h(m)
.

Equality holds for Tm = h(m)
G(z) , where G(z) =

∑
m≤z h(m). We now check that with these ζm, ρd = 0

for d > z.

Note that
ρc =

µ(c)

g(c)G(z)

∑
m≤z

m≡ (mod c)

µ(m)h(m).

Hence, ρc = 0 for c > 2.

This proves Claim 1.

Now we prove Claim 2 (|ρc| ≤ 1).

Note that any m has at most one representation as m = em′, where e | d, (m′, d) = 1 (for any d ∈ N).

Now,

G(z) ≥
∑
c|d

∑
m′≤ z

c

(m′,d)=1

h(cm′)

=
∑
c|d

h(c)
∑

m′≤ z
c

(m′,d)=1

h(m′)

≥
∑
c|d

h(e)
∑

m′≤ z
d

(m′,d)=1

h(m′)

Now,

ρd =
µ(d)2h(d)

g(d)G(z)

∑
m′≤ z

d

(m′,d)=1

µ(m′)h(m′).

Substituting the lower bound for G(z),

|ρd| ≤
h(d)

g(d)
∑

c|d h(e)
= 1,

since 1 ∗ h = h
g .
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Lemma 2.3. Assuming that:

• z ≥ 3

• g : N → [0, 1] multiplicative

• for some K,A ∈ R we have ∑
p≤z

g(p) log p ≤ κ log z +A.

Then
1∑

m≤z h(m)
≤ 2

∏
p≤z1/(eκ+1)

(1− g(p)),

where h is defined in terms of g as in Selberg’s sieve.

Proof. Note that for any c ∈ (0, 1),∑
m≤z

h(m) ≥
∑
m≤z

m|P (zc)

h(m) = G(z, c).

Then ∏
p≤zc

p∈P

(1− g(p))−1 −G(z, c) =
∏
p≤zc

p∈P

(1 + h(p))−
∑
m≤z

m|P (zc)

h(m)

=
∑
m>z

m|P (zc)

h(m)
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By Rankin’s trick,

1−
∏
p≤zc

(1− g(p))G(z, c) =
∏
p≤zc

(1− g(p))
∑
m>z

m|P (zc)

h(m)

≤
∏
p≤zc

(1− g(p))z−
λ

log z

∑
m|P (zc)

h(m)m
λ

log z (for any λ > 0)

=
∏
p≤zc

(1− g(p))e−λ
∏
p≤zc

(1 + h(p)p
λ

log z )

= e−λ
∏
p≤zc

(1− g(p) + g(p)p
λ

log z

≤ e−λ exp

∑
p≤zc

(p
λ

log z − 1)︸ ︷︷ ︸
≤ λ

log z (log p)p
λ

log z


≤ exp

−λ+
λ

log z

∑
p≤zc

g(p)(log p)p
λ

log z

 (1 + t ≤ et)

≤ exp

(
−λ+ cecλλκ+ λecλ

A

log z

)
Choose c = 1

λ and λ = eκ+ 1 to get the claim.

Lecture 11

The Brun-Titchmarsh Theorem

Theorem 2.4 (Brun-Titchmarsh Theorem). Assuming that:

• x ≥ 0, y ≥ 2

• ε > 0 and y is large in terms of ε

Then
π(x+ y)− π(x) ≤ (2 + ε)y

log y
.

Remark. We expect

π(x+ y)− π(x) =
(n+ o(1))y

log x

in a wide range of y (e.g. y ≥ xε for some ε > 0 fixed). The prime number theorem gives
this for y � x. The Brun-Titchmarsh Theorem gives an upper bound of the expected order for
y ≥ xε.
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Proof. Apply the Selberg sieve with A = [x, x+ y] ∩ N, P = P. Note that for any d ≥ 1,

|{a ∈ A : a ≡ 0 (mod d)} =
y

d
+O(1).

Hence, the sieve hypothesis holds with g(d) = 1
d , Rd = O(1).

Now, the function h in Selberg sieve is given on primes by

h(p) =
g(p)

1− g(p)
=

1

p− 1
=

1

ϕ(p)
,

where ϕ is the Euler totient function. In general,

h(d) = µ(d)2 · 1

ϕ(d)

(since ϕ is multiplicative). Now, for any z ≥ 2, Selberg sieve yields

S(A,P, z) ≤ y∑
d≤z

µ(d)2

ϕ(d)

+O

∑
d≤z2

τ3(d)

 .

By Problem 11 on Example Sheet 1, the error term is O(z2(log z)2).

Take z = y
1
2−

ε
10 . Then

z2(log z)2 � (y
1
2−

ε
10 )2(log y)2 � y1−

ε
20

(for y ≥ y0(ε)). We estimate∑
d≤z

µ(d)2

ϕ(d)
=
∑
d≤z

µ(d)2

d

d

ϕ(d)

=
∑
d≤z

µ(d)2

d
·
∏
p|d

(
1 +

1

p
+

1

p2
+ · · ·

)
︸ ︷︷ ︸

= p
p−1=

p
ϕ(p)

≥
∑
n≤z

1

n

since any n ≤ z has at least one representation as

n = dpa1
1 · · · pak

k ,

where d ≤ z is square-free and pi | d are primes and a1 ≥ 0.

We have proved ∑
n≤z

1

n
= log z +O(1) ≥

(
1− 1

10

)
log z

for z ≥ z0(ε).
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Putting everything together gives us

π(x+ y)− π(x) ≤ S(A,P, z) + z

≤ y(
1− ε

10

)
log z

+ z + y1−
ε
20

≤ (2 + ε)y

log y

for y ≥ y0(ε).
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3 The Riemann Zeta Function

Recall that the Riemann zeta function is defined by

ζ(s) =

∞∑
n=1

1

ns

for Re(s) > 1.

Remarkable properties:

(1) ζ(s) extends meromorphically to C.

(2) A functional equation relating ζ(s) ↔ ζ(1− s).

(3) All the (non-trivial) zeroes appear to be on the line Re(s) = 1
2 (Riemann hypothesis).

(4) ζ(s) closely relates to the distribution of primes.

Notation. f(x) � g(x) means f(x) � g(x) � f(x). �σ means that the constant in � can
depend on σ.

Lemma 3.1. Assuming that:

• σ > 1

• t ∈ R

Then |ζ(σ + it)| �σ 1.

Proof. By the Euler product formula,

ζ(σ + it) =
∏
p

(1− p−σ−it)−1,

hence
|ζ(σ + it)| =

∏
p

|1− p−σ−it|−1.

By the triangle inequality,

1− p−σ ≤ |1− p−σ−it| ≤ 1 + |p−σ−it| = 1 + p−σ.

Hence, ∏
p

(1− p−σ)−1 ≥ |ζ(σ + it)| ≥
∏
p

(1 = p−σ)−1.

Note that these products converge if and only if
∑

p p
−σ converges, and this sum converges by the

comparison test.
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Lemma 3.2 (Polynomial growth of eta in half-planes).

(i) f(ζ) extends to a meromorphic function on C, with the only pole being a simple pole
which is at s = 1.

(ii) Let k ≥ 0 be an integer. Then, for Re(s) ≥ −k and |s−1| ≥ 1
10 we have |ζ(s)| � k|s|k+2+1.

Lecture 12

Proof. Let k ≥ 0 be an integer.

We claim that there exist polynomials Pk, Qk of degree ≤ k + 1 and such that for Re(s) > 1,

ζ(s) =
1

s− 1
+Qk(s) + s(s+ 1) · · · (s+ k)

∫ ∞

1

Pk({t})
ts+k+1

dt. (∗)

First assume (∗) holds.

Then, since Pk({t}) � k1, for Re(s) > −k − 1
2 , |s − 1| ≥ 1

10 , (∗) gives |ζ(s)| � k|s|k+2 + 1. So (ii)
follows.

For (i), using analytic continuation and (∗), it suffices to show that the RHS of (∗) is meromorphic for
Re(s) > −k, with the only pole a simple one at s = 1.

Suffices to show that ∫ ∞

1

Pk({t})
ts+k+1

dt

is analytic for Re(s) > −k.

This follows from the following criterion: If U ⊆ C is open, f : U × R → C is piecewise continuous,
and if s 7→ f(s, t) is analytic in U for any t ∈ R, then

∫
R f(s, t)dt is analytic in U , provided that∫

R |f(s, t)|dt is bounded on compact subsets of U .

Applying this with f(s, t) = Pk({t})
ts+k+1 1[1,∞) concludes the proof of (i) assuming (∗).

We are left with proving (∗). We use induction on k.

Case k = 0: By Partial Summation,

ζ(s) =

∞∑
n=1

1

ns

= s

∫ ∞

1

buc
us+1

du (apply partial summation to
∑
n≤x

n−s and let x → ∞)

= s

∫ ∞

1

1

us
du−

∫ ∞

1

{u}
us+1

du

=
1

s− 1
+ 1− s

∫ ∞

1

{u}
us+1

du
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Take P0(u) = u, Q0(u) = 1.

Case k + 1 assuming k: Let

ck =

∫ 1

0

Pk({t})dt.

For Re(s) > 1, we have

ζ(s) =
1

s− 1
+Qk(s) + cks(s+ 1) · · · (s+ k − 1) + s(s+ 1) · · · (s+ k)

∫ ∞

1

Pk({t})− ck
ts+k+1

dt.

Let
Pk+1(u) = −

∫ u

0

(Pk(t)− ck)dt.

This is a polynomial of degree ≤ k + 2. By integration by parts,∫ ∞

1

Pt({t})− ck
ts+k+1

dt = (s+ k + 1)

∫ ∞

1

Pk+1({u})
us+k+1

du.

Substituting this into the previous equation, we get that case k + 1 follows.

The Gamma function

Definition (Gamma function). For Re(s) > 0, let

Γ(s) =

∫ ∞

0

ts−1e−tdt.

Lemma 3.3. Γ(s) is analytic for Re(s) > 0.

Proof. Apply the same criterion for integral of analytic function being analytic as in the previous
lemma, taking f(s, t) = ts−1e−t

1[0,∞)(t).

Note that for 0 < σ1 ≤ Re(s) ≤ σ2,∫
R
|f(s, t)|dt ≤

∫ 1

0

tσ1−1e−tdt+

∫ ∞

1

tσ2−1e−tdt < ∞.

Lecture 13

Lemma (Functional equation for Γ). The Γ function extends meromorphically to C, with the
only poles being simple poles at s = 0,−1,−2, . . ..
Moreover:

35



(i) Γ(s+ 1) = sΓ(s) for s ∈ C.

(ii) Γ(s)Γ(1− s) = π
sin(πs) for all s ∈ C (Euler reflection formula).

Proof.

(i) For Re(s) > 0, by integration by parts,∫ ∞

0

tse−tdt = s

∫ ∞

0

ts−1e−tdt.

This proves (i) for Re(s) > 0.
Now for any k ∈ N, for Re(s) > 0 we have

Γ(s) =
Γ(s+ k)

(s+ k − 1) · · · (s+ 1)s
.

The RHS is analytic for Re(s) > −k, so can use analytic continuation to extend Γ(s) meromor-
phically to Re(s) > −k, with the only poles being simple poles at s = 0,−1, . . . ,−k,−1.
Let k → ∞.

(ii) Since both sides are analytic in C \ Z, by analytic continuation, it suffices to prove the formula
for 0 < s < 1.
Now, for any t > 0,

ts−1Γ(s− 1) = ts−1

∫ ∞

0

u−se−udu

=

∫ ∞

0

v−se−vtdt (u = vt)

Multiply by e−t and integrate, and use Fubini to get

Γ(s)Γ(s− 1) =

∫ ∞

0

∫ ∞

0

v−se−vtdve−tdt

=

∫ ∞

0

∫ ∞

0

e−(v+1)tdtv−sdv

=

∫ ∞

0

v−s

1 + v
dv

=

∫ ∞

−∞

e(1−s)x

1 + ex
dx (v = ex)

Hence, the remaining task is to show∫ ∞

−∞

e(1−s)x

1 + ex
dx =

π

sin(πs)
.

We will do this next time.
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Theorem 3.4 (Functional equation for zeta). Assuming that:

• ξ(s) = 1
2s(s− 1)π−s/2Γ

(
s
s

)
ζ(s) for s ∈ C

Then ξ is an entire function and ξ(s) = ξ(1− s) for s ∈ C. Hence

π−s/2Γ
(s
2

)
ζ(s) = π− 1−s

2 Γ

(
1− s

2

)
ζ(1− s)

for s ∈ C \ {0, 1}.

Proof. Let Re(s) > 1. Then,

Γ
(s
2

)
=

∫ ∞

0

t
s
2−1e−tdt.

Make the change of variables f = πn2u to get

Γ
(s
2

)
= πs/2ns

∫ ∞

0

u
s
2−1e−πn2udu.

Hence
π− s

2n−sΓ
(s
2

)
=

∫ ∞

0

u
s
2−1e−πn2udu.

Summing over n ∈ N and using Fubini,

π− s
2Γ
(s
2

)
ζ(s) =

∞∑
n=1

∫ ∞

0

u
s
2−1e−πn2udu

=
1

2

∫ ∞

0

u
s
2−1(θ(u)− 1)du θ(u) =

∞∑
n=−∞

e−πn2u

=
1

2

∫ 1

0

u
s
2−1(θ(u)− 1)du+

1

2

∫ ∞

1

u
s
2−1(θ(u)− 1)du (∗)

By the functional equation

θ(u) =
1√
u
θ

(
1

u

)
,
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we have∫ 1

0

u
s
2−1(θ(u)− 1)du =

∫ 1

0

u
s
2−

3
2 θ

(
1

u

)
du−

∫ 1

0

u
s
2−1du

=

∫ ∞

1

v−
s+1
2 θ(v)dv −

∫ 1

0

u
s
2−1du (u =

1

v
)

=

∫ ∞

1

v−
s+1
2 (θ(v)− 1)dv +

∫ ∞

1

v−
s+1
2 dv︸ ︷︷ ︸

1
s−1
2

−
∫ 1

0

u
s
2−1du︸ ︷︷ ︸
1
s
2

Plugging this into (∗), we get

π− s
2Γ
(s
2

)
ζ(s) =

1

2

∫ ∞

1

(u− s+1
2 + u

s
2−1)(θ(u)− 1)du− 1

s(s− 1)
.

Hence
ξ(s) = −1

2
+

1

4
s(s− 1)

∫ ∞

1

(u− s+1
2 + u

s
2−1)(θ(u)− 1)du. (∗∗)

Since |θ(u) − 1| � e−πu, applying the criterion for integrals of analytic functions being analytic, we
see that ξ(s) is entire. So by analytic continuation, (∗∗) holds for all s ∈ C.

Moreover, the expression for ζ(s) is symmetric with respect to s 7→ 1−s, so ξ(s) = ξ(1−s), s ∈ C.

Corollary 3.5 (Zeroes and poles of zeta). The ζ function extends to a meromorphic function
in C and it has

(i) Only one pole, which is a simple pole at s = 1, residue 1.

(ii) Simple zeroes at s = −2,−4,−6, . . ..

(iii) Any other zeroes satisfy 0 ≤ Re(s) ≤ 1.

Proof.

(ii) – (iii) Follows from the lemma on polynomial growth of ζ on vertical lines.

(ii) – (iii) We know ζ(s) 6= 0 for Re(s) > 1. We want to show that if ζ(s) = 0 and Re(s) > 0
then s ∈ {−2,−4,−6, . . .} and s is a simple zero.
Let Re(s) > 0. By the functional equation for ζ,

ζ(s) = πs− 1
2︸ ︷︷ ︸

6=0

Γ
(
1−s
2

)
Γ
(
s
2

) ζ(1− s).

We claim that Γ(s) 6= 0 for all s ∈ C. By the Euler reflection formula,

Γ(s)Γ(1− s) sin(πs) = π,
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for s ∈ C.
If Γ(s) = 0, then Γ has a pole at 1− s. Hence, 1− s = −n for some n ≥ 0 integer.
But then s = n+ 1, and Γ(n+ 1) = n! 6= 0.
We conclude that for Re(s) < 0,

ζ(s) = 0 ⇐⇒ s

2
is a pole of Γ

⇐⇒ s = −2n, n ∈ N

Since the poles of Γ are simple, ζ has a simple zero at s = −2n, n ∈ N.

3.1 Partial fraction approximation of ζ

This is a formula for ζ′(s)
ζ(s) .

For the proof we need a lemma. We write, for z ∈ C, r > 0,

B(z0, r) = {z ∈ C : |z − z0| < r}

B(z0, r) = {z ∈ C : |z − z0| ≤ r}
∂B(z0, r) = {z ∈ C : |z − z0| = r}

Lemma 3.6 (Borel-Caratheodory Theorem). Assuming that:

• 0 < r < R

• f analytic in B(0, R), with f(0) = 0

Then
sup
|z|≤r

|f(z)| ≤ 2r

R− r
sup
|z|=R

Re(f(z)).

Proof. This is Exercise 10 on Example Sheet 2.

Lecture 15

Lemma 3.7 (Landau). Assuming that:

• z0 ∈ C and r > 0

• f analytic in B(z0, r)

• for some M > 1 we have |f(z)| < eM |f(z0)| for all z ∈ B(z0, r)
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Then for z ∈ B(z0, r/4), ∣∣∣∣∣∣f
′(z)

f(z)
−
∑
ρ∈Z

1

z − ρ

∣∣∣∣∣∣ ≤ 96M

r
,

where Z is the set of zeroes of f in B(z0, r/2), counted with multiplicities.

Note. If f is a polynomial, we can factorise

f(z) = a
∏
ρ

(z − ρ),

and then

f ′(z)

f(z)
= (log f(z))′

=

(
log a+

∑
ρ

log(z − ρ)

)′

=
∑
ρ

1

z − ρ

Proof. Let

g(z) =
f(z)∏

ρ∈Z(z − ρ)
.

Then g is analytic and non-vanishing in B(z0, r/2). Note that

g′(z)

g(z)
=

f ′(z)

f(z)
−
∑
ρ∈Z

1

z − ρ

( (f1−fn)
′

f1−fn
=
∑n

i=1
f ′
1

f1
).

Hence, it suffices to prove ∣∣∣∣g′(z)g(z)

∣∣∣∣ ≤ 96M

r

for z ∈ B(z0, r/4). Write

h(z) =
g(z0 + z)

g(z0)
.

Then h is analytic and non-vanishing in B(0, r/2), and h(0) = 1. We want to show∣∣∣∣h′(z)

h(z)

∣∣∣∣ ≤ 96M

r
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for z ∈ B(0, r/4).

For all z0 ∈ ∂B(0, r) we have

|h(z)| =

∣∣∣∣∣∣f(z0 + z)

f(z0)

∏
ρ∈Z

z0 − ρ

z0 + z − ρ

∣∣∣∣∣∣ ≤
∣∣∣∣f(z0 + z)

f(z0)

∣∣∣∣ < eM

since
|z0 − ρ| ≤ r

2
= r − r

2
≤ |z0 + z − ρ|

for z ∈ ∂B(0, r).

By the maximum modulus principle, |h(z)| < eM for z ∈ B(0, r/2), so

Re log h(z) = log |h(z)| < M.

By the Borel-Caratheodory Theorem with radii 3r
8 , r

4 we have for for z ∈ B(0, 3r/8),

| log h(z)| ≤
2 r
4

3r
8 − r

4

M = 4M.

Now, for z ∈ B(0, r/4), Cauchy’s theorem gives us∣∣∣∣h′(z)

h(z)

∣∣∣∣ =
∣∣∣∣∣ 1

2πi

∫
∂B(0,3r/8)

log h(w)

(z − w)2
dw

∣∣∣∣∣
≤ 1

2π
· 2π 3r

8
4M

(
3r

8
− r

4

)−2

=
96M

r

Theorem 3.8 (Partial Fraction approximation of zeta′/zeta).

(i) Let s = σ + it with |σ| ≤ 10, s 6= 1 and ζ(s) 6= 0. Then

ζ ′(s)

ζ(s)
= − 1

s− 1
+

∑
|ρ−s|≤ 1

10

1

s− ρ
+O(log(|t|+ 2)).

where the sum is over the zeroes ρ of ζ counted with multiplicity.

(ii) For any T ≥ 0, there are � log(T +2) many zeroes ρ of ζ (counted with multiplicity) with
| Im(ρ)| ∈ [T, T + 1].

Proof. We apply Landau with z0 = 2 + it, r = 50, with f(s) = (s− 1)ζ(s).
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By the lemma on polynomial growth of ζ on vertical lines, for σ + it ∈ B(z0, 50), we have

|f(s)| ≤ C(|t|+ 52)(|t + 2)50

≤ C exp(51 log(|t|+ 52))

� C exp(51 log(|t|+ 52))|f(z)|

(|ζ(z + it)| � 1).

Let s ∈ B
(
z0,

25
2

)
. Then Landau gives us

f ′(s)

f(s)
=

1

s− 1
+

ζ ′(s)

ζ(s)

=
∑

|ρ−z0|≤2S

1

s− ρ
+O(log(|t|+ 2)) (∗)

Since B
(
z0,

25
2

)
contains all the points s = σ + it with |σ| ≤ 10, it suffices to show∑

|ρ−z0|≤25
|ρ−s|> 1

10

1

s− ρ
= O(log(|t|+ 2)). (∗∗)

Substituting s = z0 in (∗), we get∑
|ρ−z0|≤25

1

z0 − ρ
= O

(∣∣∣∣ζ ′(z0)ζ(z0)

∣∣∣∣+ 1 + log(|t|+ 2)

)
= O(log(|t|+ 2))

since ∣∣∣∣ζ ′(2 + it)

ζ(2 + it)

∣∣∣∣ =
∣∣∣∣∣
∞∑

n=1

Λ(n)n−2+it

∣∣∣∣∣
≤

∞∑
n=1

Λ(n)n−2

= −ζ(2)

ζ(2)

Taking real parts, ∑
|ρ−z0|≤25

2− Re(ρ)

|z0 − ρ|2
= O(log(|t|+ 2)).

Since Re(ρ) ≤ 1, ∑
|ρ−z0|≤25

1

|z0 − ρ|2
= O(log(|t|+ 2)).

This proves part (ii). It gives also (∗∗) since the sum there contains O(log(|t|+ 2)) zeros.

Lecture 16
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3.2 Zero-free region

Proposition 3.9. Assuming that:

• σ > 1 and t ∈ R

Then
3
ζ ′

ζ
(σ) + 4Re

(
ζ ′

ζ
(σ + it)

)
+Re

(
ζ ′

ζ
(σ + 2it)

)
≤ 0. (∗∗)

Proof. Recall that
ζ ′

ζ
(s) = −

∞∑
n=1

Λ(n)

ns
,

where Λ is the von Mangoldt function function, and Re(s) > 1.

Taking linear combinations, the LHS of (∗∗) becomes

−
∞∑

n=1

Λ(n)
3 + 4Re(nit) + Re(n−2it)

nσ
= −

∞∑
n=1

Λ(n)
3 + 4 cos(t log n) + cos(2 + log n)

nσ

(Re(niu) = cos(u log n)).

We are done by the inequality:

3 + 4 cosα+ cos 2α = 2(1 + cosα)2 ≥ 0

for α ∈ R.

Theorem 3.10 (Zero-free region). There is a constant c > 0 such that ζ(σ + it) 6= 0 whenever
σ > 1− c

log(|t|+2) . In particular, ζ(s) 6= 0 for Re(s) = 1.
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Proof. Let σ ∈ [1, 2] and t ∈ R. Suppose ζ(β + it). uwe know that β ≤ 1. We know that ζ has no
zeroes in some ball B(1, r) for some r > 0 (otherwise the entire function (s − 1)ζ(s) would have an
accumulation point for its zeros).

Choosing c > 0 small enough, we can assume that |t| ≥ r. By the key inequality for ζ′

ζ ,

3
ζ ′

ζ
(σ) + 4Re

(
ζ ′

ζ
(σ + it)

)
.+Re

(
ζ ′

ζ
(σ + 2it)

)
. ≤ 0.

Apply partial fraction decomposition of ζ′

ζ . So

ζ ′

ζ
(s) = − 1

s− 1
+

∑
|s−ρ|≤ 1

10

1

s− ρ
+O(log(|t|+ 2)). (∗∗)

(t = Im(s)).

Since Re(ρ) ≤ 1 for any zero ρ,

Re
1

σ + iu− ρ
=

σ − Re(ρ)

|σ + iu− ρ|2
≥ 0

(σ > 1).

Discarding terms, we get
− 3

σ − 1
+

4

σ − β
≤ C log(|t|+ 2).
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Take σ = 1 + sc
log(|t|+2) , and assume β ≥ 1− c

log(|t|+2) to get

−3
log(|t|+ 2)

5c
+ 4

log(|t|+ 2)

6c
≤ C(log |t|+ 2).

Take c = 1
16C to get a contradiction.

Theorem 3.11 (Bounding zeta′/zeta). Assuming that:

• c > 0 sufficiently small

• T ≥ 0

• Re(s) ≥ −10

• | Im(s)| ∈ [T, T + 1]

• s is at least distance c
log(T+2) away from any zero or pole

Then ∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣� c(log(T + 2))2.

Proof. If s = σ + it with σ > 10, then ∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ =
∣∣∣∣∣
∞∑

n=1

Λ(n)n−s

∣∣∣∣∣
≤

∞∑
n=1

Λ(n)n−σ

� 1

Assume then that Re(s) ∈ [−10, 10]. Apply (∗∗). Each term satisfies

1

|s− ρ|
≤ log(T + 2)

c

1

|s− 1|
≤ log(T + 2)

c

We know that there are O(log(T + 2)) zeros with multiplicity having imaginary part ∈ [T − 2, T + 2].
The claim follows from triangle inequality.

TODO
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