%! TEX root = SGT.tex % vim: tw=80 % 21/05/2025 11AM \subsection{One-sided expanders} Goal is to find: $G_n$ graphs with $n$ vertices, $d$-regular such that $\lambda_{n - 1}(\adjm_G) \le \lambda < d$. Reminder: (Friedman) If $G \sim G_{n, d}$ uniform random $d$-regular graph then \[ \Pbb(\text{$G_n$ is $(n, d, 2\sqrt{d - 1} + \eps)$-graph}) \to 1 .\] \[ \graphexp(G_n) \ge \frac{\lambda_2(\tilde{L}_G)}{2} = \frac{\lambda_2(\lapm_G)}{2d} = \frac{(d - \lambda_{n - 1}(\adjm_G))}{2d} \ge \half - \frac{\eps}{2} > 0 .\] \begin{fcthm}[] Assuming: - $d = 2l$ large enough Then: there is $\eps = \eps_d > 0$ such that there are $d$-regular graphs (or multi-graphs) $G_n$ on $n$ vertices with $\graphexp(G_n) \ge \eps$ for all sufficiently large $n$. \end{fcthm} Graphs $G_n$ are as follows: \begin{itemize} \item $V(G_n) = [n]$, $d = 2l$. \item Take $\pi_1, \ldots, \pi_l : [n] \to [n]$ uniform independent permutations. \item Set \[ E(G_n) = \{\{x, \pi_i(x)\} : x \in [n], i \in [l]\} .\] \end{itemize} \begin{fclemma}[] There is $c = c_d > 0$ such that \[ \Pbb(\mathcloze{\text{$G_n$ is $d$-regular, i.e. $G_n$ is simple}}) \ge c - o(1) .\] \end{fclemma} \begin{fclemma}[] If $G_n$ is $d$-regular, then there exists $\eps = \eps_d > 0$ such that \[ \Pbb(\graphexp(G_n) < \eps) \to 0 .\] \end{fclemma} \begin{proof} If $\graphexp(G_n) < \eps$ then there exists $F \subseteq [n]$, $r = |F| \le \frac{n}{2}$, there exists $F'$, $F \subseteq F'$ and $e(F, F') = d|F|$ and $|F'| = r + r'$, $r' = \lfloor \eps r \rfloor$. \begin{center} \includegraphics[width=0.6\linewidth]{images/a9dec0c25034429b.png} \end{center} \[ \Pbb(\graphexp(G_n) < \eps) < \sum_{1 \le r \le \frac{n}{2}} \sum_{\substack{F \subseteq F' \subseteq [n] \\ |F| = r \\ |F'| = r + r'}} \Pbb(\pi_i(F) \subseteq F' \text{ for all $i \in [l]$}) .\] $\Pbb(\pi_1(F) \subseteq F') = \frac{{r + r' \choose r}}{{n \choose r}}$. \[ \Pbb \le \sum_{1 \le r \le \frac{n}{2}} \frac{n!}{r! r'! (n - r - r')!} \left( \frac{{r + r' \choose r}}{{n \choose r}} \right)^l .\] Fact 1: $\frac{{a \choose k}}{{b \choose k}} \le \left( \frac{a}{b} \right)^k$ if $a \le b$. Proof: It is equivalent to \[ ba \cdot b(a - 1) \cdots b(a - k + 1) \le ab \cdot a(b - 1) \cdots a(b - k + 1) .\] Compare the product term by term. Fact 2: $n! \ge \left( \frac{n}{e} \right)^n$. Proof: \[ e^n = \sum_{k \ge 0} \frac{n^k}{k!} \ge \frac{n^n}{n!} .\] Using these: \[ \frac{n!}{r! r'! (n - r - r')!} \le \frac{n^{r + r'}}{r! r'!} = \frac{n^{r + r'}}{(r + r')!} {r + r' \choose r} \le (2e)^{r + r'} \left( \frac{n}{e + e'} \right)^{r + r'} .\] So \begin{align*} \Pbb &\le \sum_{1 \le r \le \frac{n}{2}} (2e)^{r + r'} \left( \frac{n}{r + r'} \right)^{r + r'} \left( \frac{r + r'}{n} \right)^{lr} \\ &\le \sum_{1 \le r \le \frac{n}{2}} (2e)^{2r} \left( \frac{(1 + \eps)r}{n} \right)^{r(l - 1 - \eps)} \end{align*} Decompose as $\sum_{1 \le r \le n/2} = \sum_{1 \le r \le K} + \sum_{K < r \le n/2} = S_1 + S_2$. Choose $\eps > 0$ small so that $\gamma = \frac{1 + \eps}{2}$ is small. Choose $l$ large so that $\gamma^{l - 1 - \eps} < \frac{1}{2(2e)^2}$. \begin{align*} S_2 &\le \sum_{K < r \le \frac{n}{2}} (2e)^{2r} \left( \frac{(1 + \eps)}{2} \right)^{r(l - 1 - \eps)} \\ &\le \sum_{K < r \le \frac{n}{2}} \left( \half \right)^r \\ &\le \frac{1}{2^K} \end{align*} Now $S_1$. \begin{align*} S_1 &\le \sum_{1 \le r \le K} (2e)^{2r} \left( \frac{(1 + \eps)r}{n} \right)^{r(l - 1 - \eps)} \\ &\le \left( \frac{2K}{n} \right)^{l - 2} \sum_{1 \le r \le K} (2e)^{2r} \\ &\le c^K \left( \frac{K}{n} \right)^l \end{align*} Now let $K = \log\log\log n$, so this is $\le O((\log\log n) n^{-l} (\log\log\log n)^l) \to 0$. Also, $S_1 \le \frac{1}{2^K}$ term goes to $0$. \end{proof} For the lemma about $\Pbb(\text{$d$-regular}) \ge c - o(1)$: \begin{center} \includegraphics[width=0.6\linewidth]{images/3dc572c0258f484e.png} \end{center} These are the bad things. Use Bonferroni inequalities (the partial sum of inclusion exclusion principle inequalities).