%! TEX root = SGT.tex % vim: tw=80 % 19/05/2025 11AM \subsubsection*{Vertex expansion} \gls{ndlam} $G = (V, E)$. Have for all $S, T \subseteq V$, \[ \left| e(S, T) - \frac{d}{n} |S| |T| \right| \le \frac{\lambda}{n} \sqrt{|S| |S^c| |T| |T^c|} .\] $\setexp_v(S) = \frac{|\partial S|}{|S|}$. \begin{center} \includegraphics[width=0.6\linewidth]{images/9ef9e422ad90431f.png} \end{center} \begin{align*} |\partial S| &\ge \frac{e(S, S^c)}{d} \\ \setexp_v(S) &\ge \frac{e(S, S^c)}{d|S|} \\ &= \setexp_e(S) \end{align*} If $S \subseteq V$, $|S| \le n/2$, then \begin{align*} \setexp_V(S) &\ge \setexp_e(G) \\ &\ge \frac{\lambda_2(\tilde{L}_G)}{2} \\ \setexp_v(S) &\ge \frac{\left( 1 - \frac{\lambda}{d} \right)}{2} \\ |S \cup \partial S| &\ge \left( 1 + \half - \frac{\lambda}{2d} \right) \end{align*} $n \to \infty$, $d$, $\lambda$ fixed. $\lambda \le d - \delta$, $\delta > 0$. $|S \cup \partial S| \ge (1 + \kappa)|S|$ for some $\kappa > 0$. Hence \[ |B(x, r)| \ge (1 + \kappa)^r \] if $|B(x, r - 1)| \le n/2$. $\diam G = O_{\frac{\lambda}{d}}(\log n)$ (by considering ball around start and end). \subsubsection*{Why aren't Cayley graphs of abelian groups expanders?} Let $\Gamma$ be an abelian group and $S \subseteq \Gamma$ a set of generators of size $d$. Let $|\Gamma| = n \to \infty$. Let $G = \Cay(\Gamma, S)$. Then \[ |B(x, r)| \le (2r + 1)^d .\] This is not exponential in $r$, so the Cayley graph can't be an expander. \begin{fcthm}[Alon-Boppana] Assuming: - $G = (V, E)$ an \gls{ndlam} Then: as $n \to \infty$ \[ \lambda \ge 2\sqrt{d - 1} - O(1) .\] \end{fcthm} \begin{proof}[Proof 1] Pick edge $st$, pick $r \in \Zbb_{\ge 0}$. \begin{center} \includegraphics[width=0.6\linewidth]{images/343e62b5f1b34fce.png} \end{center} $\varphi : V \to \Rbb$, \[ \varphi(x) = \begin{cases} (d - 1)^{-i/2} & \text{if $x \in V_i$, $i \le r$} \\ 0 & \text{if $x \in V_i$, $i > r$} \end{cases} \] \[ \q_\lapm(\varphi) = \frac{\langle \varphi, \lapm \varphi \rangle}{\langle \varphi, \varphi \rangle} \qquad \langle \varphi, \varphi \rangle = \sum_{i = 0}^r \frac{|V_i|}{(d - 1)^i} .\] \begin{align*} \langle \varphi, \lapm \varphi \rangle &= \sum_{x \sim y} (\varphi(x) - \varphi(y))^2 \\ &= \sum_{i = 0}^{r - 1} e(V_i, V_{i + 1}) \left( \frac{1}{(d - 1)^{i/2}} - \frac{1}{(d - 1)^{(i + 1)/2}} \right)^2 + \frac{e(V_r, V_{r + 1})}{(d - 1)^r} \\ &= \sum_{i = 0}^{r - 1} \frac{e(V_i, V_{i + 1})}{(d - 1)^i} \left( 1 - \frac{1}{\sqrt{d - 1}} \right)^2 + \frac{e(V_r, V_{r + 1})}{(d - 1)^r} \end{align*} $e(V_i, V_{i + 1}) \le (d - 1) |V_i|$. \begin{align*} \langle \varphi, \lapm \varphi \rangle &\le \sum_{i = 0}^{r - 1} \frac{|V_i|}{(d - 1)^i} (\sqrt{d - 1} - 1)^2 + \frac{|V_r|}{(d - 1)^r} (d - 1) \\ (\sqrt{d - 1} - 1)^2 &= (d - 1) - 2\sqrt{d - 1} + 1 = d - 2\sqrt{d - 1} \\ \langle \varphi, \lapm \varphi \rangle &\le (d - 2\sqrt{d - 1}) \sum_{i = 0}^{r - 1} \frac{|V_i|}{(d - 1)^i} + (d - 1) \frac{|V_r|}{(d - 1)^r} \\ |V_r| &\le (d - 1) |V_{r - 1}| \le \cdots \le (d - 1)^{r - i} |V_i| \\ \implies \frac{|V_r|}{(d - 1)^r} &\le \frac{1}{r} \sum_{i = 0}^{r} \frac{|V_i|}{(d - 1)^i} \\ \langle \varphi, \lapm \varphi \rangle &\le (d - 2\sqrt{d - 1}) \sum_{i = 0}^{r} \frac{|V_i|}{(d - 1)^i} + (2\sqrt{d - 1}) \frac{|V_r|}{(d - 1)^r} \\ &\le \left(d - 2\sqrt{d - 1} + \frac{2\sqrt{d - 1} - 1}{r + 1}\right) \langle \varphi, \varphi \rangle \\ \implies \lambda_2(\lapm) &= \min_{\dim W = 2} \max_{\substack{f \in W \\ f \neq 0}} \frac{\langle f, \lapm f \rangle}{\langle f, f \rangle} \end{align*} Suppose $G$ has 2 deges at distance $> 2r + 2$. \begin{center} \includegraphics[width=0.6\linewidth]{images/917ab3256183488c.png} \end{center} $f$, $f'$ as above. $\langle f, f' \rangle = 0$. \[ \Q_\lapm(\alpha f + \beta f') = \Q_\lapm(\alpha f) + \Q_\lapm(\beta f') .\] Let $W = \Span \{f, f'\}$. \begin{align*} \lambda_2(\lapm) &\le \max_{(\alpha, \beta) \neq (0, 0)} \frac{\Q_\lapm(\alpha f + \beta f')}{\|\alpha f + \beta f'\|} \\ &\le \frac{\alpha^2 \Q_\lapm(f) + \beta^2 \Q_\lapm(f')}{\alpha^2 \|f\| + \beta^2 \|f'\|} \\ &\le d - 2\sqrt{d - 1} + \frac{2\sqrt{d - 1} - 1}{r + 1} \qedhere \end{align*} \end{proof} \begin{fccoro}[] For all $d$, \cloze{there are finitely many \glspl{ndlam} with $\lambda < 2\sqrt{d - 1}$.} \end{fccoro} $r = c\log n$. \[ \lambda_{n - 1}(\adjm_G) \ge 2\sqrt{d - 1} - O_d \left( \frac{1}{\log n} \right) .\] For Alon-Boppana: \begin{proof}[Proof 2] $\tr A^{2k} = \sum_x A^{2k} (x, x)$. Note that \[ \#\{\text{closed walks of length $2k$ in $G$ starting from $x$}\} .\] is at least \[ \#\{\text{closed walks of length $2k$ in $\prod_d$ starting from $0$}\} \] ($\prod_d$ is an infinite $d$-regular tree). The latter is at least \[ (d - 1)^k \frac{1}{k + 1} {2k \choose k} \approx (2 \sqrt{d - 1})^{2k + o(1)} 2^{2k} .\] \[ \le \sum_{i = 1}^n \lambda_i^{2k} \le d^{2k} + (n - 1) \lambda^{2k} .\] Exercise: finish details. \end{proof} $\min\{|\lambda_1(A)|\lambda_{n - 1}(A)\} \ge \cdots$