%! TEX root = SGT.tex % vim: tw=80 % 16/05/2025 11AM \begin{fcprop}[] \glsnoundefn{ndlam}{$(n, d, \lambda)$-graph}{$(n, d, \lambda)$-graphs}% Assuming: - $G$ a $d$-regular graph on $n$ vertices - $\lambda, \eps > 0$, $\eps d = \lambda$ Then: the following are equivalent: \begin{enumerate}[(i)] \item $G$ is a $(n, d, \lambda)$-graph \item $\lambda_k(\adjm_G) \ni [-\lambda, \lambda]$, for $1 \le k \le n - 1$ \item $\lambda_k(\lapm_G) \in [d - \lambda, d + \lambda]$ for $2 \le k \le n$ \item $\lambda_k(\tilde{L}_G) \in \left[ 1 - \frac{\lambda}{d}, 1 + \frac{\lambda}{d} \right] = [1 - \eps, 1 + \eps]$ for $1 \le k \le n$ \item $(1 - \eps) \frac{d}{n} \lapm_{K_n} \lordle \lapm_G \lordle (1 + \eps) \frac{d}{n} \lapm_{K_n}$ \item $G$ is $(d, \eps)$-expander (also $(d, \frac{\lambda}{d})$-expander) \item $\left\|\lapm_G - \frac{d}{n} \lapm_{K_n} \right\| \le \eps d = \lambda$ \item $\left\| \adjm_G - \frac{d}{n} J \right\| \le \eps d = \lambda$ \end{enumerate} \end{fcprop} \begin{fclemma}[Expander Mixing Lemma] Assuming: - $G = (V, E)$ an $(n, d, \lambda)$-graph - $S, T \subseteq V$ (and define $e(S, T) = \sum_{x \in S} \sum_{y \in T} \indicator{xy \in E}$) Then: \begin{align*} \left| e(S, T) - \frac{d}{n} |S| |T| \right| &\le \frac{\lambda}{n} \sqrt{|S| |S^c| |T| |T^c|} \\ &\le \lambda \sqrt{|S| |T|} \end{align*} \end{fclemma} \begin{proof} $\langle \indicator{S}, \lapm_G \indicator{T} \rangle = \langle \indicator{S}, (dI - \adjm_G) \indicator{T} \rangle$, $\langle \indicator{S}, dI \indicator{T} \rangle = d|S \cap T|$. \begin{align*} \langle \indicator{S}, \adjm_G \indicator{T} \rangle &= \sum_x \sum_y \indicator{S}(x) \adjm_G(x, y) \indicator{T}(y) \\ &= \sum_x \sum_y \indicator{xy \in E} \\ &= e(S, T) \end{align*} $\frac{d}{n} \lapm_{K_n} = dI - \frac{d}{n} J$. \[ \langle \indicator{S}, \frac{d}{n} J \indicator{T} \rangle = \frac{d}{n} \langle \indicator{S}, J \indicator{T} \rangle = \frac{d}{n} \sum_x \sum_y J(x, y) = \frac{d}{n} |S| |T| .\] \begin{align*} \left| e(S, T) - \frac{d}{n} |S| |T| \right| &= \left| \left\langle \indicator{S}, \left( \frac{d}{n} \lapm_{K_n} - \lapm G \right) \indicator{T} \right\rangle \right| \\ &\le \|\indicator{S}\| \left\| \left( \frac{d}{n} \lapm_{K_n} - \lapm_G \right) \indicator{T} \right\| \\ &\le \|\indicator{S}\| \left\| \left( \frac{d}{n} \lapm_{K_n} - \lapm_G \right) \right\| \|\indicator{T}\| \\ &\le \lambda \|\indicator{S}\| \|\indicator{T}\| \\ &= \lambda \sqrt{|S| |T|} \end{align*} To get the better bound, we should consider functions which are perpendicular to $1$: balanced function $f_S = \indicator{S} - \frac{|S|}{n} 1$. $\lapm_G f_S = \lapm_G(\indicator{S} - \alpha) = L \indicator{S}$. \begin{align*} \left| e(S, T) - \frac{d}{n} |S| |T| \right| &= \left|\left\langle f_S, \left( \frac{d}{n} \lapm_{K_n} - \lapm_G \right) f_T \right\rangle\right| \\ &\le \lambda \|f_S\| \|f_T\| \end{align*} \begin{align*} \|f_S\|^2 &= |S| \left( 1 - \frac{|S|}{n} \right)^2 + (n - |S|) \left( -\frac{|S|}{n} \right)^2 \\ &= |S| \left( 1 - \frac{2|S|}{n} + \frac{|S|^2}{n^2} \right) + (n - |S|) \frac{|S|^2}{n^2} \\ &= |S| - \frac{2|S|^2}{n} + \frac{|S|^3}{n^2} + \frac{|S|^2}{n} - \frac{|S|^3}{n^2} \\ &= |S| - \frac{|S|^2}{n} \\ &= \frac{n|S| - |S|^2}{n} \\ &= \frac{|S| |S^c|}{n} \end{align*} So \[ \left| e(S, T) - \frac{d}{n} |S| |T| \right| \le \sqrt{|S| |S^c| |T| |T^c|} . \qedhere \] \end{proof} If $G$ is an \gls{ndlam} and $I \subseteq V$ an independent set, then \[ 0 = e(I, I) \ge \frac{d}{n} |I|^2 - \frac{\lambda}{n} |I| |I^c| .\] $\lambda|I| |I^c| \ge d|I|^3$. \[ |I| \le \frac{\lambda}{d} |I^c| = \frac{\lambda}{d}(n - |I|) .\] \[ \left( 1 + \frac{\lambda}{d} \right) |I| \le \frac{\lambda}{d} n \] \[ |I| \le \frac{\lambda}{d \left( 1 + \frac{\lambda}{d} \right)} n = \frac{\lambda}{d + \lambda} n .\] \textbf{Hoffman bound:} $\alpha(G) \le \frac{\lambda}{d + \lambda} n$. Fix $d$. How small can $\lambda$ be such that there is an infinite family $G_n$ of \glspl{ndlam}? Note $\adjm_G^2$ has $d$ in each entry of the diagonal, so \[ \tr \adjm_G^2 = dn = \sum_i \lambda_i (\adjm_G^2) = \sum_i (\lambda_i (\adjm_G))^2 .\] So $dn \le d^2 + (n - 1) \lambda^2$. So $(n - 1) \lambda^2 \ge dn - d^2 = d(n - d)$, so \[ \lambda^2 \ge \frac{d(n - d)}{n - 1} = d \left( \frac{n - 1 - (d - 1)}{n - 1} \right) = d \left( 1 - \frac{d - 1}{n - 1} \right) .\] $\lambda \ge \sqrt{d} (1 - o(1))$ as $n \to \infty$. \textbf{Alon-Boppana Theorem:} $\lambda \ge 2\sqrt{d - 1} - o(1)$. \textbf{Claim:} There exist families of \glspl{ndlam} with $\lambda = 2\sqrt{d - 1}$. They are called Ramanujan graphs. We will probably not prove existence of these. Call $\eps$-Ramanujan if $\lambda \ge 2\sqrt{d - 1} + \eps$. \begin{theorem}[Friedman] Assuming: - $\eps > 0$, $n \to \infty$ Then: \[ \Pbb(\text{random $d$-regular graph on $n$ vertices is $\eps$-Ramanujan}) \to 1 .\] \end{theorem} Maxcut in \gls{ndlam}: \begin{align*} e(S, S^c) &\le \frac{d}{n} |S| |S^c| + \frac{\lambda}{n} |S| |S^c| \\ &\le \left( \frac{d}{n} + \frac{\lambda}{n} \right) \frac{n^2}{4} \\ &= \frac{dn}{4} + \frac{\lambda n}{4} \\ &\le \frac{e(G)}{2} + \frac{\lambda n}{4} \end{align*} Diameter, vertex expansion. $S \subseteq V$, $\partial S = \{x \in S^c : x \sim S\}$. \[ \frac{|\partial S|}{|S|} \ge \frac{e(S, S^c)}{d|S|} = \setexp(S) \ge \frac{\lambda_2(\tilde{L}_G)}{2} \ge \frac{\left( 1 - \frac{\lambda}{d} \right)}{2} \] $|\partial S| \ge \left( \frac{1 - \lambda / d}{2} \right) |S|$. Exercise: Diameter $O(\log n)$.