%! TEX root = SGT.tex % vim: tw=80 % 14/05/2025 11AM \begin{example*} $C_N$. This has $\lambda_2(\tilde{L}_{C_N} = \theta \left( \frac{1}{N^2} \right)$. For $S \subseteq C_N$ with $|1 \le S| \le \half|C_N|$, we have $e(S, V \setminus S) \ge 2$. So \[ \graphexp(S) = \min_{\substack{S \subseteq V \\ 0 < |S| < |V|/2}} \frac{e(S, V \setminus S)}{d|S|} = \min_{1 \le s \le N/2} \frac{2}{2s} \simeq \frac{2}{N} .\] Compare with \nameref{thm:cheeger}: \[ \frac{1}{N^2} < \frac{1}{N} \le \sqrt{\frac{1}{N^2}} .\] \end{example*} \begin{example*} $G = Q_n$, $N = 2^n$. $G = \Cay((\Zbb / 2\Zbb)^n, \{e_1, \ldots, e_n\})$. We index eigenfunctions by sets $T \subseteq [n]$. $\chi_T(x) = (-1)^{\sum_{i \in T} x_i}$, $\lambda_T = \frac{2|T|}{n}$. $\lambda_2^(\tilde{L}_{Q_n}) = \frac{2}{n} = \frac{2}{\log N}$. $\graphexp(Q_n) \ge \frac{2}{2n} = \frac{1}{n}$. If $S \subseteq Q_n$, $|S| \le N/2$, then \[ \frac{e(S, V \setminus S)}{n|S|} \ge \frac{1}{n} \quad \implies \quad e(S, V \setminus S) \ge |S| .\] Harper gives a better bound: \[ e(S, V \setminus S) \ge |S| \log_2 \left( \frac{2^n}{|S|} \right) .\] By considering $S$ being half of the cube, we get \[ \graphexp(Q_n) = \frac{1}{n} = \frac{\lambda_2(\tilde{K}_{Q_n})}{2} .\] Fiedler's algorithm: Let $f = \sum_{i = 1}^n \chi_{\{i\}}$, $\tilde{L}_{Q_n} f = \frac{2}{n} f$. $f(x) = \sum_{i = 1}^n (-1)^{x_i} = n - 2|x|$. \[ \Phi_k = \frac{{n \choose k}(n - k)}{n \sum_{j = 0}^k {n \choose j}} .\] $k = \frac{n}{2}$, \[ \frac{{n \choose n/2} \frac{n}{2}}{n2^{n - 1}} = \frac{{n \choose n/2}}{2^n} \approx \frac{1}{\sqrt{n}} .\] \end{example*} \newpage \section{Loewner order} \begin{fcdefn}[Loewner order] \glssymboldefn{lord}% For $A$, $B$ matrices, write $A \preccurlyeq B$ if $B - A$ is positive semidefinite. In particular, $A \succcurlyeq 0$ if and only if $A$ is positive semidefinite. \end{fcdefn} $\q_A(f) = \frac{\langle f, Af \rangle}{\langle f, f \rangle} = 0$. $A \lordle B$ if and only if $\forall f \neq 0$, \[ \frac{\langle f, A f \rangle}{\langle f, f \rangle} \le \frac{\langle f, Bf \rangle}{\langle f, f \rangle} .\] $\langle f, Af \rangle \le \langle f, Bf \rangle$. This is indeed an order: $A \lordle B \lordle C$ implies $A \lordle C$ \[ \langle f, Af \rangle \le \langle f, Bf \rangle \le \langle f, Cf \rangle .\] If $A \lordle B$, then $\lambda_k(A) \le \lambda_k(B)$. \[ \lambda_k(A) = \min_{\dim W = k} \max_{\substack{f \in W \\ f \neq 0}} \frac{\langle f, Af \rangle}{\langle f, f \rangle} .\] $A \lordle B$ if and only if $A + C \lordle B + C$. If $G$ is a graph, then $\lapm_G \lordle 0$. \begin{fcdefn}[eps-approximation] \glsnoundefn{epsapp}{$\eps$-approximation}{$\eps$-approximations}% $G$ is an \emph{$\eps$-approximation of $H$} if \[ (1 - \eps) \lapm_H \lordle \lapm_G \lordle (1 + \eps) \lapm_H .\] \end{fcdefn} \begin{fclemma}[] Given the definition $\|M\| = \max_{f \neq 0} \frac{\|Mf\|}{\|f\|}$ (for $M$ symmetric), we have \cloze{$\|M\| = \max \{|\lambda_k(M)|\}$.} \end{fclemma} \begin{proof} $f = \sum_i \alpha_i \varphi_i$, $M \varphi_i = \lambda_i \varphi_i$, $\|f\|^2 = \sum_i \alpha_i^2$, \[ \|Mf\|^2 = \left\| \sum_i \alpha_i \lambda_i \varphi_i \right\|^2 = \sum_i \alpha_i^2 \lambda_i^2 .\] \[ \frac{\|Mf\|}{\|f\|} = \sqrt{\frac{\sum_i \alpha_i^2 \lambda_i^2}{\sum_i \alpha_i^2}} \le \max_k |\lambda_k| . \qedhere \] \end{proof} \begin{lemma}[] Assuming: - $G$ is an \gls{epsapp} of $H$ Then: $\|\lapm_G - \lapm_H\| \le \eps$. \end{lemma} \begin{proof} $-\eps \tilde{L}_H\lordle \tilde{L}_G - \tilde{L}_H \lordle \eps \tilde{L}_H$. $\lambda_k(\tilde{L}_G - \tilde{L}_H) \le \lambda_k(\tilde{L}_H) \le 2\eps$. \end{proof} \begin{fcdefnstar}[(d,eps)-expander] \glsnoundefn{depsexp}{$(d, \eps)$-expander}{$(d, \eps)$-expanders}% $G = (V, E)$, $|V| = n$ is a \emph{$(d, \eps)$-expander} if $G$ is an \gls{epsapp} of $\frac{d}{n} K_n$. \end{fcdefnstar} Equivalent: \[ (1 - \eps) \frac{d}{n} \lapm_{K_n} \lordle \lapm_G \lordle (1 + \eps) \frac{d}{n} \lapm_{K_n} .\] $\lapm_{K_n} = (n - 1) I - A_{K_n} = nI - J$, where $J$ is the all ones matrix ($J(x, y) = 1$). If $f \perp q$, then $Jf = \langle f, 1 \rangle f = 0$. In this case, $\lapm_{K_n} f = nIf - Jf = nf$. So $\lambda_k(\lapm_{K_n}) = n$ for $k \ge 0$. \[ (1 - \eps) \frac{d}{n} (nI - J) \lordle dI - \adjm_G \lordle (1 + \eps) \frac{d}{n} (nI - J) \] \[ -\eps \frac{2}{n} (nI - J) \lordle dI - \adjm_G - \frac{d}{n} (nI - J) \lordle \eps \frac{d}{n} (nI - J) \] \[ -\eps \left( dI - \frac{d}{n} J \right) \lordle \frac{d}{n} J - \adjm_G \lordle \eps \left( dI - \frac{d}{n} J \right) \] For $f \perp 1$, $-\eps d \langle f, f \rangle \le -\langle f, Af \rangle \le \eps d \langle f, f \rangle$. So $G$ is a \gls{depsexp} if and only if \[ |\lambda_k(\adjm_G)| \le \eps d \] for all $1 \le k \le n - 1$. \begin{center} \includegraphics[width=0.6\linewidth]{images/1f235e1bbbff4b6a.png} \end{center} \begin{fclemma}[Expander Mixing Lemma] Assuming: - $G$ is $d$-regular - $G$ is a \gls{depsexp} Then: $\forall S, T \subseteq V$, \[ \left|e(S, T) - \frac{d}{n} |S| |T|\right| \le \frac{\eps d}{n} \sqrt{|S| |T| |S^c| |T^c|} .\] \end{fclemma}