%! TEX root = SGT.tex % vim: tw=80 % 12/05/2025 11AM Recall that \[ \setexp(S) = \q_{\tilde{L}_G}(\indicator{S}) \] and \[ \graphexp(G) = \min_{\substack{S \subseteq V \\ 1 \le |S| \le |V|/2}} \q_{\tilde{L}_G}(\indicator{S}) .\] \subsubsection*{Fiedler's Algorithm} \textbf{Input:} $G, \varphi : V \to \Rbb$. \begin{itemize} \item Sort vertices $x_1, \ldots, x_n$ such that $\varphi(x_1) \le \cdots \le \varphi(x_n)$. \item Find cut $K$ that minimises $\Phi(\{x_2, \ldots, x_k\}, \{x_{k + 1}, \ldots, x_n\})$. \end{itemize} \textbf{Output}: The cut. Running time: $O(|V| \log |V| + |E|)$. \begin{fclemma}[] Assuming: - $\psi : V \to \Rbb$ - $\langle \psi, 1 \rangle = 0$ - let $(S, V \setminus S) = \operatorname{Fiedler}(G, \psi)$ Then: \[ \graphexp(S, V \setminus S) \le \sqrt{2\q_{\tilde{L}_G}(\psi)} .\] \end{fclemma} If $\psi : V \to \Rbb$, call a cut $(\{x : \psi(x) \ge \tau)\}, \{x : \psi(x) < \tau\})$ a threshold cut for $\psi$. \begin{fclemma}[] \label{lemma:lec5l2} Assuming: - $\varphi : V \to \Rbb$ - $\langle \varphi, 1 \rangle = 0$ Then: there is $\psi : V \to \Rbb_{\ge 0}$ such that $\q_{\tilde{L}_G}(\psi) \le \q_{\tilde{L}_G}(\psi)$, $|\supp \psi| = |\{x : \psi(x) > 0\}| \le \frac{|V|}{Q}$ and any threshold cut for $\psi$ is a threshold cut for $\varphi$. \end{fclemma} \begin{fclemma}[] \label{lemma:lec5l3} Assuming: - $\psi : V \to \Rbb_{\ge 0}$ Then: there is $0 < t \le \|\psi\|_\infty$ such that \[ \setexp(\{x : \psi(x) \ge t\}) \le \sqrt{2\q_{\tilde{L}_G}(\psi)} .\] \end{fclemma} \begin{proof}[Proof of \cref{lemma:lec5l2}] If $\langle \varphi, 1 \rangle = 0$ then \begin{align*} \q_{\tilde{L}_G}(\varphi + \alpha 1) &= \frac{\Q_{\tilde{L}_G}(\varphi + \alpha 1)}{\|\varphi + \alpha 1\|^2} \\ &= \frac{\Q_{\tilde{L}_G}(\varphi)}{\|\varphi\|^2 + \alpha^2} \\ &\le \frac{\Q_{\tilde{L}_G}(\varphi)}{\|\varphi\|^2} \\ &= \q_{\tilde{L}_G}(\varphi) \end{align*} Let $m \in \Rbb$ be the median of $\varphi$. \begin{align*} |\{x \in V : \varphi(x) > m\}| &\le \frac{|V|}{2} \\ |\{x \in V : \varphi(x) < m\}| &\le \frac{|V|}{2} \end{align*} $\ol{\varphi} = \varphi - m1$, $\q_{\tilde{L}_G}(\ol{\varphi}) \le \q_{\tilde{L}_G}(\varphi)$. Let $\ol{\varphi} = \ol{\varphi}^+ - \ol{\varphi}^-$, where $\ol{\varphi}^+, \ol{\varphi}^- : V \to \Rbb_{\ge 0}$. So \[ \ol{\varphi}(x) = \begin{cases} \ol{\varphi}^+(x) & \varphi(x) > m \\ -\ol{\varphi}^-(x) & \varphi(x) < m \\ 0 & \varphi(x) = m \end{cases} .\] Note $\langle \ol{\varphi}^-, \ol{\varphi}^+ \rangle = 0$. Claim: either $\ol{\varphi}^+$ or $\ol{\varphi}^-$ suffices. \begin{align*} \q_{\tilde{L}_G}(\varphi) &\ge \q_{\tilde{L}_G}(\ol{\varphi}) \\ &= \q_{\tilde{L}_G}(\ol{\varphi}^+ - \ol{\varphi}^-) \\ &= \frac{\sum_{x \sim y} (\ol{\varphi}^+(x) - \ol{\varphi}^-(x) - \ol{\varphi}^+(y) + \ol{\varphi}^-(y))^2}{\|\ol{\varphi}^+ - \ol{\varphi}^-\|^2} \\ &= \frac{\sum_{x \sim y} ((\ol{\varphi}^+(x) - \ol{\varphi}^+(y)) - (\ol{\varphi}^-(x) - \ol{\varphi}^-(x))^2}{\|\ol{\varphi}^+\|^2 + \|\ol{\varphi}^-\|^2} \\ &\ge \frac{\sum_{x \sim y} (\ol{\varphi}^+(x) - \ol{\varphi}^+(y))^2 + (\ol{\varphi}^-(x) - \ol{\varphi}^-(y))^2}{\|\ol{\varphi}^+\|^2 + \|\ol{\varphi}^-\|^2} \\ &= \frac{\q_{\tilde{L}_G}(\ol{\varphi}^+) \|\ol{\varphi}\|^2 + \q_{\tilde{L}_G}(\ol{\varphi}^-) \|\ol{\varphi}^-\|^2}{\|\ol{\varphi}\|^2 + \|\ol{\varphi}^-\|^2} \end{align*} \end{proof} \begin{proof}[Proof of \cref{lemma:lec5l3}] Assume $\|\psi\|_\infty = 1$. We find $0 < t \le 1$. Choose $t$ at random, such that $t^2 \sim \Unif([0, 1])$. Let \[ S_t = \{x \in V : \psi(x) > t\} .\] Then \[ \Ebb|S_t| = \sum_x \Pbb(x \in S_t) = \sum_x \Pbb(\psi(x)^2 > t^2) = \sum_x \psi(x)^2 .\] Have \[ \setexp(S_t) = \frac{e(S_t, V \setminus S_t)}{d|S_t|} .\] Also, can calculate: \begin{align*} \Ebb d|S_t| &= d\sum_x \psi(x)^2 \\ \Ebb e(S_t, V \setminus S_t) &= \sum_{x \sim y} \Pbb(\text{$xy$ is cut by $(S_t, V \setminus S_t)$}) \\ &= \sum_{x \sim y} |\psi(x)^2 - \psi(y)^2| \\ &= \sum_{x \sim y} |\psi(x) - \psi(y)| (\psi(x) + \psi(y)) \\ &\le \sqrt{\sum_{x \sim y} (\psi(x) - \psi(y))^2} \cdot \sqrt{\sum_{x \sim y} (\psi(x) + \psi(y))^2} \end{align*} Then \begin{align*} \frac{\Ebb e(S_t, V \setminus S_t)}{\Ebb d|S_t|} &\le \sqrt{\q_{\tilde{L}_G}(\psi)} \cdot \sqrt{\frac{\sum_{x \sim y} (\psi(x) + \psi(y))^2}{d\sum_x \psi(x)^2}} \\ &\le \sqrt{2\q_{\tilde{L}_G}(\psi)} \end{align*} Now use the following fact to finish: \textbf{Fact}: If $X$ and $Y$ are random variables with $\Pbb(Y > 0) = 1$, then $\Pbb \left( \frac{X}{Y} \le \frac{\Ebb X}{\Ebb Y} \right)$. (Proof: let $R = \frac{\Ebb X}{\Ebb Y}$. Then $\Ebb(X - RY) = 0$, so $\Pbb(X - RY \le 0)) > 0$, hence $\Pbb(\frac{X}{Y} \le R) > 0$). \end{proof}