%! TEX root = SGT.tex % vim: tw=80 % 09/05/2025 11AM \subsection{Irregular graphs} $A$, $D$, $L = D - A$, $\Q_\lapm(f) = \sum_{x \sim y} (f(x) - f(y))^2$, $\q_\lapm(f) = \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x f(x)^2}$. \begin{align*} \Q_\lapm(f) &= \langle f, \lapm f \rangle \\ &= \langle , (D - A) f \rangle \\ &= \langle f, (2D - (D + A)) f \rangle \\ &= \langle f, 2Df \rangle - \langle f, (D + A) f \rangle \end{align*} When $G$ is $d$-regular, \[ \tilde{L}_G = \frac{1}{d} \lapm_G = I - \frac{1}{d} \adjm_G ,\] $\lambda_i(\tilde{L}_G \in [0, 2]$. \[ \q_{\tilde{L}}(f) = \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x d(x) f(x)^2} \\ = 2 - \frac{\sum_{x \sim y} (f(x) + f(y))^2}{\sum_x d(x) f(x)^2} .\] Want $M$ such that $\q_M(f)$ equals the expression above. Recall $\q_M(f) = \frac{\langle f, Mf \rangle}{\langle f, f \rangle}$. But the above expression is $\frac{\langle f, Mf \rangle}{\langle f, Df \rangle}$. Let $D^{\half}(x, y) = \indicator{x = y} \sqrt{d(x)}$. Assume $d(x) \ge 1$ for all $x \in G$. Note \[ \q_M(D^{\half} f) = \frac{\langle D^{\half} f, MD^{\half} f \rangle}{\langle D^{\half} f, D^{\half} f \rangle} = \frac{\langle f, D^{\half} M D^{\half} f \rangle}{\langle f, Df \rangle} .\] Want $D^{\half} M D^{\half} = L = D - A$. Define \[ \tilde{L}_G = D^{-\half} (D - A) D^{-\half} = I - D^{-\half} A D^{-\half} .\] So \[ \tilde{L}_G = \begin{cases} 1 & \text{if $x = y$} \\ -\frac{1}{\sqrt{d(x)d(y)}} & \text{if $x \neq y$ and $x \sim y$} \\ 0 & \text{if $x \neq y$ and $x \not\sim y$} \\ \end{cases} \] Also, \[ \q_{\tilde{L}_G}(D^{\half} f) = \frac{\sum_{x \sim y} (f(x) - y(y))^2}{\sum_x d(x) f(x)^2} .\] We have \[ \lambda_k(\tilde{L}_G) = \min_{\dim W = K} \max_{\substack{f \in W \\ f \neq 0}} \q_{\tilde{L}_G}(D^{\half} f) .\] \newpage \section{Expansion and Cheeger inequality} Assume $G$ is $d$-regular. Write $G = (V, E)$. \begin{center} \includegraphics[width=0.6\linewidth]{images/6672818a9be54586.png} \end{center} \begin{fcdefn}[Expansion] \glssymboldefn{setexp}% Given a $d$-regular graph $G$ and $S \subseteq V$, the \emph{expansion of $S$} is \[ \Phi(S) \defeq \frac{e(S, V \setminus S)}{d|S|} .\] \end{fcdefn} Note that $0 \le \setexp \le 1$, for example because \[ \setexp(S) = \Pbb_{\substack{x \sim U(S) \\ y \sim N(x)}} (y \notin S) .\] \begin{fcdefn}[Edge expansion] \glssymboldefn{edgeexp}% The \emph{(edge) expansion} of a cut $(S, V \setminus S)$ is defined as \[ \Phi(S, V \setminus S) \defeq \max \{\setexp(S), \setexp(V \setminus S)\} = \frac{e(S, V \setminus S)}{d \min \{|S|, |V \setminus |\}} .\] \end{fcdefn} \begin{fcdefn}[Edge expansion of a graph] \glssymboldefn{graphexp}% The \emph{edge expansion of a graph} is \[ \Phi(G) \defeq \min_{\substack{S \subseteq V \\ \emptyset \neq S \neq V}} \edgeexp(S, V \setminus S) = \min_{\substack{S \subseteq V \\ 0 < |S| < |V|/2}} \setexp(S) .\] \end{fcdefn} \begin{fcthm}[Cheeger's inequality] \label{thm:cheeger} Assuming: - $G$ be $d$-regular Then: \[ \frac{\lambda_2(\tilde{L}_G)}{2} \le \graphexp(G) \le \sqrt{2\lambda_2(\tilde{L}_G)} .\] \end{fcthm} Consider $\indicator{S} : V \to \Rbb$, where $\indicator{S}(x) = 1$ if $x \in S$ and $\indicator{S}(x) = 0$ otherwise. Then \begin{align*} \Q_\lapm(\indicator{S}) &= \sum_{x \sim y} (\indicator{S}(x) - \indicator{S}(y))^2 = e(S, V \setminus S) \\ \q_{\tilde{L}}(\indicator{S}) &= \frac{e(S, V \setminus S)}{d|S|} = \setexp(S) \end{align*} Recall \[ \lambda_2(\tilde{L}_G) = \min_{\dim W = 2} \max_{\substack{f \in W \\ f \neq 0}} \q_{\tilde{L}_G}(f) .\] We pick $W = \Span \{\indicator{S}, \indicator{V \setminus S}\}$. Note \begin{align*} \lambda_2(\tilde{L}_G) &\le \max_{\substack{\alpha, \beta \\ (\alpha, \beta) \neq (0, 0)}} \q_{\tilde{L}_G}(\alpha \indicator{S} + \beta \indicator{V \setminus S}) \\ &\le \max_{\alpha, \beta} 2\max \{q_{\tilde{L}(G)}(\alpha \indicator{S}), \q_{\tilde{L}_G}(\beta \indicator{V \setminus S})\} \end{align*} \begin{fclemma}[] Assuming: - $M$ is symmetric positive semi-definite - $\langle f, g \rangle = 0$ Then: \[ \q_M(f + g) \le 2\max \{\q_M(f), \q_M(g)\} .\] \end{fclemma} \begin{proof} Let $\lambda_i$, $\varphi_i$ such that $f = \sum_i \lambda_i \varphi_i$ and $g = \sum_i \beta_i \varphi_i$. Then \[ \q_M(f + g) = \frac{\sum_i \lambda_i (\alpha_i + \beta_i)^2}{\|f + g\|^2} \le \frac{\sum_i \lambda_i (2\alpha_i^2 + 2\beta_i^2)}{\|f\|^2 + \|g\|^2} .\] Then \begin{align*} \q_M(f + g) &\le 2 \left( \frac{\sum_i \lambda_i \alpha_i^2 + \sum_i \lambda_i \beta_i^2}{\|f\|^2 + \|g\|^2} \right) \\ &= 2 \left( \frac{\q_M(f) \|f\|^2 + \q_M(g)\|g\|^2}{\|f\|^2 + \|g\|^2} \right) \\ &\le 2\max \{\q_M(f), \q_M(g)\} \qedhere \end{align*} \end{proof} \begin{proof}[Proof of left inequality in \nameref{thm:cheeger}] $\lambda_2 \le 2 \max \{\setexp(S), \setexp(V \setminus S)\} = 2\edgeexp(S, V \setminus S)$. Then minimise over all $S$, to get $\lambda_2 \le 2 \graphexp(G)$. \end{proof}