%! TEX root = SGT.tex % vim: tw=80 % 05/05/2025 11AM % \begin{notation} \glssymboldefn{q}% Define $Q_M : l^2(\Omega) \to \Cbb$ by $Q_M(f) = \langle f, Mf \rangle = \sum_{x, y} f(x) M(x, y) f(y)$. Define $q_m(f) = \frac{Q_M(f)}{Q_I(f)}$. \end{notation} \begin{fclemma} $\lambda_1(M) = \min_{f \neq 0} \q_M(f)$ and it is attained only on eigenfunctions of $\lambda_1$. \end{fclemma} \begin{proof} Let $f = \sum_i \alpha_i \varphi_i$ and $Mf = \sum_i \alpha_i \lambda_i \varphi_i$. Then \begin{align*} \Q_M(f) &= \langle f, M f \rangle \\ \sum_{i, j} \alpha_i \alpha_j \lambda_i \langle \varphi_i, \varphi_j \rangle \\ &= \sum_i \alpha_i^2 \lambda_i \end{align*} and \[ \q_M(f) = \frac{\sum_i \alpha_i^2 \lambda_i}{\sum_i \alpha_i^2} \ge \lambda_i .\] Equality occurs here if and only if $\sum_i (\lambda_1 - \lambda_i) \alpha_i^2 = 0$. So $\alpha_i = 0$ whenever $\lambda_i > \lambda_1$. \end{proof} \begin{fclemma} Assuming: - $\varphi_1$ is an eigenfunction of $\lambda_1$. Then: $\lambda_2(M) = \min_{\substack{f \perp \varphi_1 \\ f \neq 0}} \q_M(f)$, and it is attained only on eigenfunctions of $\lambda_2(M)$. \end{fclemma} \begin{proof} \[ \q_M(f) = \frac{\sum_i \alpha_i^2 \lambda_i}{\sum_i \alpha_i^2} \ge \frac{\alpha_1^2 \lambda_1 + \left( \sum_{i \ge 2} \alpha_i^2 \right) \lambda_2}{\sum_i \alpha_i^2} .\] So \[ \min_{\substack{f \perp \varphi_i \\ f \neq 0}} \q_M(f) \ge \lambda_2 .\] Deal with the equality case similarly to before. \end{proof} In general: \[ \lambda_k(M) = \min_{\substack{f \perp \varphi_1, \ldots, \varphi_{k - 1} \\ f \neq 0}} \q_M(f) .\] (and equality case is similar to before). Also, \begin{align*} \lambda_n(M) &= \max_{f \neq 0} \q_M(f) \\ \lambda_{n - k}(M) &= \max_{\substack{f \perp \varphi_n, \ldots, \varphi_{n - k + 1} \\ f \neq 0}} \q_M(f) \end{align*} (and equality case is similar to before). \newpage \section{Graphs and some of their matrices} Graph $G = (V, E)$: set of vertices $V$, $|V| = n$, $E$ is a set of (unordered) pairs of vertices. \begin{fcdefn}[Adjacency matrix] \glssymboldefn{adjm}% The \emph{adjacency matrix} of a graph $G$ is the matrix $A_G : V \times V \to \Rbb$ defined by \[ A_G(x, y) = \begin{cases} 1 &\{x, y\} \in E(G) \\ 0 &\{x, y\} \notin E(G) \end{cases} \] \end{fcdefn} \begin{fcdefn}[Degree matrix] \glssymboldefn{degm}% The \emph{degree matrix} of a graph $G$ is the matrix $D_G : V \times V \to \Rbb$ defined by \[ D_G(x, y) = \begin{cases} \deg(x) &x = y \\ 0 &\text{otherwise} \end{cases} \] \end{fcdefn} \begin{fcdefn}[Laplacian matrix] \glssymboldefn{lapm}% The \emph{Laplacian matrix} of a graph $G$ is defined by $L_G = \degm - \adjm$. \end{fcdefn} We can now calculate: \begin{align*} \Q_{\adjm}(f) &= \sum_{x, y} f(x) \adjm(x, y) f(y) \\ &= 2\sum_{x \sim y} f(x) f(y) \\ \Q_\degm(f) &= \sum_{x, y} f(x) \degm(x, y) f(y) \\ &= \sum_x f(x)^2 \deg(x) \\ &= \sum_x f(x)^2 \sum_y \adjm(x, y) \\ &= \sum_{x, y} f(x)^2 \adjm(x, y) \\ &= \half \sum_{x, y} (f(x)^2 + f(y)^2) \adjm(x, y) \\ &= \sum_{x \sim y} (f(x)^2 + f(y)^2) \\ \Q_\lapm(f) &= \Q_{\degm - \adjm}(f) \\ &= \Q_\degm(f) - \Q_\adjm(f) \\ &= \sum_{x \sim y} (f(x)^2 + f(y)^2 - 2f(x)f(y)) \\ &= \sum_{x \sim y} (f(x) - f(y))^2 \\ &\ge 0 \end{align*} \begin{fccoro}[] For any graph $G$, $\lapm_G$ is \cloze{a positive semi definite matrix with eigenvector $1$, which has eigenvalue $1$}. \end{fccoro} \begin{proof} Since $\Q_\lapm(f) = \sum_{x \sim y} (f(x) - f(y))^2$, we see that $\Q_\lapm(f) \ge 0$, with equality when $f$ is constant. \end{proof} \begin{fcprop}[] \begin{iffc} \lhs $\lambda_2(\lapm_g) > 0$ \rhs $G$ is connected. \end{iffc} \begin{iffc} \lhs $\lambda_k(\lapm_G) = 0$ \rhs $G$ has at least $k$ connected components. \end{iffc} \end{fcprop} \begin{proof} \[ \lambda_2 = \min_{\substack{f \perp 1 \\ f \neq 0}} \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\langle f, f \rangle} \ge 0 \] Equality happens if and only if $\Q_\lapm(f) = 0$, which happens if and only if $f$ is constant on connected components. The dimension of $\{f : \text{constant on connected components}\}$ is the number of connected components of $G$. TODO? \end{proof} TODO