%! TEX root = SGT.tex % vim: tw=80 % 30/05/2025 11AM \begin{fcdefn}[Real stable] A polynomial $p(z_1, \ldots, z_n) \in \Rbb[z_1, \ldots, z_n]$ is \emph{real stable} if $p(z_1, \ldots, z_n) \neq 0$ for all $(z_1, \ldots, z_n) \in \mathcal{H}^n$, $\mathcal{H} = \{z \in \Cbb \st \Im z > 0\}$. \end{fcdefn} Notice that for a single variable, $p(z)$ is real stable if and only if real rooted. \begin{example*} $1 - z_1 z_2$. \end{example*} \begin{fcprop}[Stable iff real rooted] \begin{iffc} \lhs $p(z_1, \ldots, z_n)$ is real stable \rhs for all $\Rbb_{\ge 0}^n$, $b \in \Rbb^n$, the polynomial $t \mapsto p(at + b)$ is real rooted. \end{iffc} \end{fcprop} \begin{iffproof} \rightimpl If $p$ not stable, then there exists $z_0, \ldots, z_n \in \mathcal{H}$ with $p(z_1, \ldots, z_n) = 0$, $z_j = b_j + ia_j$, $a_j > 0$. Then $p(ai + b) = 0$, $t = i$. \leftimpl Suppose $\exists a \in \Rbb_{\ge 0}^n$, $b \in \Rbb^n$, $t \in \Cbb \setminus \Rbb$ with $p(a t + b) = 0$. Assume $\Im t > 0$. $z_j + a_j t + b_j \in \mathcal{H}$. $p(z_1, \ldots, z_n) = p(at + b) = 0$. \begin{center} \includegraphics[width=0.6\linewidth]{images/91a3560f024b4036.png} \end{center} \end{iffproof} \begin{fcprop}[Stability of real stable] Assuming: - $p(z_1, \ldots, z_n)$ is real stable Then: the following are also: \begin{itemize} \item $p(z_{\sigma(1)}, \ldots, z_{\sigma(n)})$, $\sigma \in S_n$. \item $p(az_1, z_2, \ldots, z_n)$, $a \in \Rbb_{\ge 0}$. \item $p(z_2, z_2, z_3, \ldots, z_n)$. \item $p(c, z_2, \ldots, z_n)$, $c \in \mathcal{H} \cup \Rbb$. \item $z_1^{d_1} p \left( -\frac{1}{z_1}, z_2, \ldots, z_n \right)$. \item $\partial_{z_1} p(z_1, \ldots, z_n)$. \item $\MAP(p(z_1, \ldots, z_n))$. $\MAP(z_1 z_2 + z_2 z_3^2 + 2z_1 z_4 + z_2 z_3^2) = z_1 z_2 + 2z_1 z_4$. \item If $p, q$ are real stable, then so is $pq$. \end{itemize} \end{fcprop} \begin{fcprop}[Mother of all stable polynomials] Assuming: - $B \in \Rbb^{d \times d}$ symmetric matrix - $A_1, \ldots, A_m \in \Rbb^{d \times d}$ positive semi definite Then: $\det(B + z_1 A_1 + \cdots + z_n A_n)$ is real stable. \end{fcprop} \begin{proof} Let $a \in \Rbb_{\ge 0}^n$, $b \in \Rbb^n$. Assume positive definite instead of positive semi definite. \begin{align*} \det \left( B + \sum_{j = 1}^n (a_j t + b_j) A_j \right) = \det \left( \ub{\left( \sum_{j = 1}^{n} a_j A_j \right)}_{\eqdef A} t + \ub{\left( \sum_{j = 1}^{n} b_j A_j + B \right)}_{\eqdef C} \right) \end{align*} $A$ is positive definite, and $C$ is symmetric. So \begin{align*} &= \det(At + C) \\ &= \det(A^\half (tI + A^{-\half} C A^{-\half})A^\half) \\ &= \det A \det(tI + A^{-\half} C A^{-\half}) \end{align*} The roots are eigenvalues of a real symmetric matrix, hence real. \end{proof} \begin{proof}[Proof of \cref{thm:matrix}] Say $r_j$ equals $r_j^+$ with probability $p_j^+$, and equals $r_j^-$ with probability $p_j^-$. We will use Cauchy Binet: \[ \det(AB) = \sum_{\substack{}} \det(A_{S \times [n]}) \det(B_{[n] \times C}) TODO \] \begin{align*} p(z_1, \ldots, z_n) &= \Ebb \det \left( \sum_{j = 1}^{n} z_j r_j r_j^\top \right) \\ &= \Ebb \sum_{\substack{S \subseteq [m] \\ |S| = n}} \det \left( \sum_{j \in S} z_j r_j r_j^\top \right) \\ &= \Ebb \sum_{\substack{S \subseteq [m] \\ |S| = n}} \left(\prod_{j \in S} z_j\right) \det \left( \sum_{j \in S} r_j r_j^\top \right) \end{align*} \[ \det \left( \Ebb \sum_{j = 1}^n z_j r_j r_j^\top \right) = \det \left( \sum_{j = 1}^{n} z_j \Ebb r_j r_j^\top \right) \] is real stable since $\Ebb r_j r_j^\top \ge 0$ is a covariance matrix. \begin{align*} &= \det \left( \sum_{j = 1}^{m} z_j(p_j^+ r_j^+ (r_j^+)^\top + p_j^- r_j^- (r_j^-)^\top) \right) \\ &= \sum_{\substack{S \subseteq [m] \\ |S| = n}} \left( \prod_{j \in S} z_j \right) \sum_{n \in \{\pm 1\}^S} \det (p_j^{h(j)} r_j^{h(j)} (r_j^{h(j)})^\top) + \text{``terms with squares''} \end{align*} So the earlier thing is real stable. So \[ \Ebb \det \left( \sum_{j = 1}^{m} z_j r_j r_j^\top \right) \] is real stable. So \[ \Ebb \det \left( \sum_{j = 1}^m z_j r_j r_j^\top + \sum_{j = 1}^{m} x_j e_j e_j^\top \right) \] is real stable. Take $z_j = -1$, $x_j = x$. Then \[ \Ebb \det \left( xI - \sum_{j = 1}^{m} r_j r_j^\top \right) \] is real stable. \end{proof} \begin{fcthm}[Godsil] % Theorem 14 Assuming: - $G$ is $d$-regular - $\lambda_1 \le \cdots \le \lambda_n$ are the roots of $\mu_G(x)$ Then: \[ \sum_{k = 1}^{n} \lambda_k^l = \sum_a W_a^l(G) ,\] where $W_a^l(G)$ is the number of closed walks of length $l$ from $a$ in the path tree $T_a(G)$ of $G$. \end{fcthm} \begin{fcdefn}[Path tree] Example: $T_a(G)$ \begin{center} \includegraphics[width=0.6\linewidth]{images/e67fcde1c96141f0.png} \end{center} \end{fcdefn} \begin{proof}[Proof of \cref{thm:godsil14} implies \cref{thm:heilman3}] $W_a^l(G) \le W_a^l(\prod_d) \le (2\sqrt{d - 1} + o_l(1))^l$. $\lambda_n^l \le \sum \lambda_k^l = \sum_a W_a^l(G) \le n(2\sqrt{d - 1} + o_l(1))^l$. $\lambda_n \le n^{\frac{1}{l}} (2\sqrt{d - 1} + o_l(1))$. Take $l \to \infty$. \end{proof} \begin{proof}[Proof of \cref{thm:godsil14}] $\mu_G'(x) = \sum_a \mu_{G - a}(x)$ Hence \begin{align*} \sum_a \sum_{k \ge 0} x^{n - 1 - 2k} (-1)^k m_k(G - a) &= \sum_{k \ge 0} (n - 2k) x^{n - 1 - 2k} (-1)^k m_k(G) \\ &= \mu_G'(x) \end{align*} \begin{align*} \mu_G(x) &= x \mu_{G - a}(x) - \sum_{b \sim a} \mu_{G - a - b}(x) \\ m_k(G) &= m_k(G - a) + \sum_{b \sim a} m_{k - 1}(G - a - b) \\ x^{n - 2k}(-1)^k m_k(G) &= x \cdot x^{n - 1 - 2k} (-1)^k m_k(G - a) - \sum_{b \sim a} x^{n - 2 - 2(k - 1)} (-1)^{k - 1} m_{k - 1}(G - a - b) \\ \sum_a \frac{\mu_{G - a}(x)}{\mu_G(x)} &= \frac{\mu_G'(x)}{\mu_G(x)} \\ &= \sum_{j = 1}^{n} \frac{1}{x - \lambda_j} \\ &= \frac{1}{x} \sum_{j = 1}^{n} \frac{1}{1 - \frac{\lambda_j}{x}} \\ &= \frac{1}{x} \sum_{j = 1}^{n} \sum_{l \ge 0} \frac{\lambda_j^l}{x^l} \\ &= \frac{1}{x} \sum_{l \ge 0} \frac{\sum_j \lambda_j^l}{x^l} \end{align*} Claim: $\frac{\mu_{G - a}(x)}{\mu_G(x)} = \frac{1}{x} \sum_{l \ge 0} \frac{W_a^l(G)}{x^l}$. \begin{align*} \frac{\mu_{G - a}(x)}{\mu_G(x)} &= \frac{\mu_{G - a}(x)}{x\mu_{G - a}(x) - \sum_{b \sim a} \mu_{G - a - b}(x)} \\ &= \frac{1}{x} \frac{1}{1 - \frac{1}{x}\sum_{b \sim a} \frac{\mu_{G - a - b}(x)}{\mu_{G - a}(x)}} \\ &= \frac{1}{x} \cdot \sum_{k \ge 0} \left( \frac{1}{x} \sum_{b \sim a} \frac{\mu_{G - a - b}(x)}{\mu_{G - a}(x)} \right)^k \\ &= \frac{1}{x} \sum_{k \ge 0} \frac{1}{x^k} \left( \sum_{b \sim a} \frac{1}{x} \sum_{l \ge 0} \frac{W_b^l(G - a)}{x^l} \right)^k \\ &= \frac{1}{x} \sum_{k \ge 0} \frac{1}{x^{2k}} \left( \sum_{b_1 \sim a} \sum_{l_1 \ge 0} \frac{W_G^{l_1}(G - a)}{x^{l_1}} \right) \cdots \left( \sum_{b_k \sim a} \sum_{l_k \ge 0} \frac{W_{b_k}^{l_k}(G - a)}{x^{l_k}} \right) \\ &= \frac{1}{x} \sum_{l \ge 0} \frac{W_a^l(G)}{x^l} \end{align*} Why? A tree-like walk in $W_a^l(G)$ that visits $a$ exactly $k$ times is determined by: \begin{itemize} \item A sequence $b_1, \ldots, b_k$ of neighbours of $a$. \item A sequence $\gamma_1, \ldots, \gamma_k$ of walks in $T_{b_i}^{l_i}(G - a)$ where $2k + l_1 + \cdots + l_k = l$. \end{itemize} \end{proof}