%! TEX root = SGT.tex % vim: tw=80 % 28/05/2025 11AM Last time, when working on $\det(xI - A_s)$, we showed: \begin{fcthm}[Godsil-Gutman, 80s] % Theorem 2 \[ \Ebb_{S \sim \{\pm 1\}} \det(xI - A_s) = \mu_G(x) ,\] where \[ \mu_G(x) = \sum_{k \ge 0} x^{n - 2k} (-1)^k m_k(G) ,\] where $m_k(G)$ is the number of matchings in $G$ with $k$ edges. \end{fcthm} Fact: $\mu_G(x)$ is real rooted. \begin{fcthm}[Heilman-Lieb, 72] \label{thm:heilman3} % Theorem 3 Assuming: - $G$ is $d$-regular Then: \[ \maxroot \mu_G(x) \le 2\sqrt{d - 1} .\] \end{fcthm} If only we could say that $\maxroot \Ebb_S \det(xI - A_s)$ is an average of $\maxroot \det(xI - A_h)$, $h \in \{\pm 1\}^E$. Hopelessly false: \begin{center} \includegraphics[width=0.6\linewidth]{images/daf57239a1904212.png} \end{center} \begin{fcdefn}[Interlacing] % Definition 4 Let $f$ be a real rooted polynomial of degree $n$ with roots $\alpha_1, \ldots, \alpha_n$ and $g$ a real rooted polynomial of degree $n - 1$ with roots $\beta_1, \ldots, \beta_{n - 1}$. We say $g$ \emph{interlaces} $f$ if \[ \alpha_1 \le \beta_1 \le \alpha_2 \le \cdots \le \beta_{n - 2} \le \alpha_{n - 1} \le \beta_{n - 1} \le \alpha_n .\] \end{fcdefn} \begin{center} \includegraphics[width=0.6\linewidth]{images/e562147cfe38493f.png} \end{center} \begin{example*} If $f$ is real rooted, then so is $f'$, and also $f'$ interlaces $f$. \end{example*} \begin{fcdefn}[Common interlacement] % Definition 5 We say that real rooted polynomials $f$, $g$ of degree $n$ have a \emph{common interlacement} if there is a polynomial $h$ of degree $n + 1$ such that $f$ and $g$ both interlace $h$. In other words, if the roots of $f$ and $g$ are $\alpha_1 \le \cdots \alpha_n$ and $\beta_1 \le \cdots \le \beta_n$ respectively, then they have a common interlacement if and only if there are some $\gamma_0 \le \cdots \le \gamma_n$ such that \[ \gamma_0 \le \alpha_1, \beta_1 \le \gamma_1 \le \alpha_2, \beta_2 \le \gamma_2 \le \cdots \le \gamma_{n - 1} \le \alpha_n, \beta_n \le \gamma_n .\] \end{fcdefn} \begin{fcthm}[Fell 80] Assuming: - $f$, $g$ are real rooted - both degree $n$, monic Then: $f$ and $g$ have a common interlacing if and only if every convex combination of $f$ and $g$ are real rooted. \end{fcthm} \begin{center} \includegraphics[width=0.6\linewidth]{images/96c4953a5aa54504.png} \end{center} \begin{center} \includegraphics[width=0.6\linewidth]{images/1b75cf48fdaa491a.png} \end{center} \begin{proof} Assume $f$ and $g$ without repeated or common roots (general case requires more work and details checking). \begin{enumerate}[$\Rightarrow$] \item[$\Leftarrow$] Let $h_t(x) = tf(x) + (t - 1) g(x)$ for $t \in (0, 1)$. We know these are real rooted, and waht to show that $f$, $g$ have a common interlacement. Let $\lambda_i(t)$ be the $i$-th root of $h_t(x)$. $\lambda_i(t)$ includes $(\lambda_i(0), \lambda_i(1)) \subseteq \Rbb$. Claim: $(\lambda_I(0), \lambda_I(1))$ are disjoint. Suppose not. Let $\lambda_k$ be a root of $f$ and $\lambda_k \in (\lambda_I(0), \lambda_I(1))$. So there exists $t \in (0, 1)$ such that $\lambda_I(t) = \lambda_k$. \[ h_t(\lambda_k) = 0 = tf(\lambda_k) + (1 - t) g(\lambda_k) ,\] so $g(\lambda_k) = 0$, contradiction as we assumed no common roots. \item[$\Rightarrow$] \leavevmode \begin{center} \includegraphics[width=0.6\linewidth]{images/9de811e8b18c45f0.png} \end{center} The dots represent the roots of the polynomial that interlaces them. By monicness, we get the blue and green $+$s and $-$s. Then get the orange ones, and use intermediate value theorem. \qedhere \end{enumerate} \end{proof} \begin{fccoro}[] % Corollary 7 Assuming: - $f$, $g$ are real rooted of degree $n$ - have a common interlacing Then: for all $t \in [0, 1]$ \[ \min \{\maxroot(f), \maxroot(g)\} \le \maxroot(tf(x) + (1 - t)g(x)) .\] \end{fccoro} Approach to \cref{thm:exists signing}: $f(x) = \Ebb_{S \in \{\pm 1\}^E} \det(xI - A_s)$, $|E| = m$. For $h_1, \ldots, h_k \in \{\pm 1\} = \{+, -\}$, then \[ f_{h_1, \ldots, h_k}(x) = \Ebb_{s_{k + 1}, \ldots, s_m \in \{\pm 1\}} (\det(xI - A_s) \mid s_1 = h_1, \ldots, s_k = h_k) .\] ``Method of interlacing families of polynomials'' \begin{center} \includegraphics[width=0.6\linewidth]{images/f563eaeb15b240db.png} \end{center} \begin{fcthm}[Marcus, Spielman, Srivastava (real rooted)] % THeorem 8 \label{thm:real rooted} For every $\rho_1, \ldots, \rho_m \in [-1, 1]$ the following polynomial is real rooted \[ \chi_{\rho_1, \ldots, \rho_m}(x) = \sum_{S \in \{\pm 1\}^m} \det(xI - A_s) \prod_{J : s_J = 1} \left( \frac{1 + \rho_J}{2} \right) \prod_{J : S_J = -1} \left( \frac{1 - \rho_J}{2} \right) .\] \end{fcthm} \cref{thm:real rooted} implies \cref{thm:exists signing}: \[ f_{h_1, \ldots, h_k}(x) = \chi_{h_1, \ldots, h_k, 0, 0, \ldots, 0}(x) .\] \[ \mu_G(x) = \chi_{0, \ldots, 0}(x) .\] \[ tf_{h_1, \ldots, h_k, 1}(x) + (1 - t) f_{h_1, \ldots, h_k, -1}(x) = \chi_{h_1, \ldots, h_k, 2t - 1, 0, \ldots, 0}(x) .\] \begin{fcthm}[Marcus, Spielman, Srivastava (matrix)] \label{thm:matrix} % Theorem 9 Assuming: - $r_1, \ldots, r_m \in \Rbb^n$ are independent random vectors, whose support has $\le 2$ points Then: \[ \Ebb \det \left( xI - \sum_{j = 1}^{m} r_j r_j^\top \right) \] is real rooted. \end{fcthm} \cref{thm:matrix} implies \cref{thm:real rooted}: $\chi_{\rho_1, \ldots, \rho_m}(x)$ is \[ \Ebb \det(xI - A_s) .\] \begin{center} \includegraphics[width=0.6\linewidth]{images/52728aa3555148d3.png} \end{center} $\Ebb \det(xI - A_s)$ is real rooted if and only if $\Ebb \det((x + d)I - A_s)$ is real rooted. This equals \[ \Ebb \det(xI + (dI - A_s)) .\] Note \[ dI - A_S = \sum_{x \sim y} (e_x + S(x, y) e_y)(e_x + S(x, y) e_y)^\top .\] Done.