%! TEX root = SGT.tex % vim: tw=80 % 26/05/2025 11AM \gls{ndlam} $n$: number of vertices, $d$-regular, $\lambda_k(A) \in [-\lambda, \lambda]$, $k \neq n$. Ramanujan graph: $(n, d, 2\sqrt{d - 1})$-graph. \begin{itemize} \item Petersen $(10, 3, 2\sqrt{2})$-graph. \item Complete (bipartite), $d = n - 1$ big :(. \item Paley $\Cay(\Zbb / p\Zbb, \{x^2 : x \in \Zbb / p\Zbb, x \neq 0\})$, $p \equiv 1 \pmod{4}$. $d = \frac{p - 1}{2}$ big :(. \end{itemize} Alon-Boppana: For every $\eps > 0$ fixed $d \ge 3$, there are finitely many $(n, d, 2\sqrt{d - 1} - \eps)$-graphs. Bipartite: $(n, d, \lambda)$-graph, $n$ vertices, $d$-regular, $\lambda_k(A) \in [-\lambda, \lambda]$ for $k \neq n, 1$. \begin{fcthm}[Lubotsky-Phillips-Sanak / Margoulis] Assuming: - $p$ prime - $d = p + 1$ - $n$ arbitrarily large Then: there exists a $(n, d, 2\sqrt{d - 1})$-graph. \end{fcthm} \noproof Goal: \begin{fcthm}[Marcus, Spielman, Srivastava] \label{thm:exists bipartite raman} Assuming: - $d \ge 3$ Then: there are $(n, d, 2\sqrt{d - 1})$-bipartite graphs for arbitrarily large $n$. \end{fcthm} Strategy: Bilu and Linial. Lifts of graphs: \begin{fcdefn}[2-lift] A \emph{2-lift} of a graph $G = (V, E)$ is a graph $\hat{G} = (\hat{V}, \hat{E})$ with \begin{citems} \item $x \in V$ $\implies$ $x_0, x_1 \in \hat{V}$. \item $xy \in E$ $\implies$ either $x_0 y_0, x_1 y_1 \in \hat{E}$ or $x_0 y_1, x_1 y_0 \in \hat{E}$. \end{citems} (and no other vertices or edges). \end{fcdefn} \begin{center} \includegraphics[width=0.6\linewidth]{images/aada27d44fbc4293.png} \end{center} \begin{fcdefn}[Signing] $S : V \times V \to \Rbb$ is a \emph{signing} of $G$ if \[ S(x, y) = \begin{cases} \pm 1 & \text{if $A(x, y) = 1$} \\ 0 & \text{if $A(x, y) = 0$} \end{cases} \] and $S(x, y) = S(y, x)$ (symmetric). So can think of $S$ as a function $E \to \{\pm 1\}$. \end{fcdefn} $A_S^+(x, y) = A(x, y) \indicator{S(x, y) = 1}$. $A_S^-(x, y) = A(x, y) \indicator{S(x, y) = -1}$. Have $A = A_S^+ + A_S^-$, $S = A_S^+ - A_S^-$. \begin{fclemma}[] The eigenvalues of $\hat{G}$ \cloze{are the eigenvalues of $\adjm_G$ (old) together with the eigenvalues of $S$ (new).} \end{fclemma} \begin{proof} \[ \adjm_{\hat{G}_S} = \begin{pmatrix} A_S^+ & AS_S^- \\ A_S^- & AS_S^+ \end{pmatrix} \] Let $A \varphi = \lambda \varphi$. Then \[ \adjm_{\hat{G}_S} \begin{pmatrix} \varphi \\ \varphi \end{pmatrix} = \begin{pmatrix} A_S^+ \varphi + A_S^- \varphi \\ A_S^- \varphi + A_S^+ \varphi \end{pmatrix} = \begin{pmatrix} A \varphi \\ A \varphi \end{pmatrix} = \begin{pmatrix} \lambda \varphi \\ \lambda \varphi \end{pmatrix} = \lambda \begin{pmatrix} \varphi \\ \varphi \end{pmatrix} .\] Let $S\eta = \mu\eta$. Now \[ \adjm_{\hat{G}_S} \begin{pmatrix} \eta \\ -\eta \end{pmatrix} = \begin{pmatrix} A_S^+ \eta - A_S^- \eta \\ A_S^- \eta - A_S^+ \eta \end{pmatrix} = \begin{pmatrix} S \eta \\ -S \eta \end{pmatrix} = \begin{pmatrix} \mu \eta \\ -\mu \eta \end{pmatrix} = \mu \begin{pmatrix} \eta \\ -\eta \end{pmatrix} . \qedhere \] \end{proof} \begin{conjecture}[Bilu, Linial] If $G$ is $d$-regular, then there exists a signing $S : E(G) \to \{\pm 1\}$ whose eigenvalues are in $[-2\sqrt{d - 1}, 2\sqrt{d - 1}]$. \end{conjecture} \begin{fcthm}[Bilu, Linial] Can find signings $S$ with eigenvalues $\lambda$ satisfying $|\lambda| = O(\sqrt{d(\log d)^3})$. \end{fcthm} \begin{fcthm}[Marcusm, Spielman, Srivastava] \label{thm:exists signing} Assuming: - $G$ is a $d$-regular graph Then: there exists a signing with eigenvalues $\lambda$ with $\lambda \le 2\sqrt{d - 1}$. \end{fcthm} \begin{proof}[\cref{thm:exists signing} implies \cref{thm:exists bipartite raman}] \leavevmode \begin{itemize} \item Start with $K_{d, d}$. \item Keep applying \cref{thm:exists signing} to find signing. \item Build lift with that signing. \item 2-lift of bipartite graph is bipartite. \item Spectrum of adjacency matrix of bipartite graph is symmetric around $0$. \qedhere \end{itemize} \end{proof} \begin{notation*} For $\pi \in \Sym(X)$, let $|\pi|$ be the number of inversions. \end{notation*} \cref{thm:exists signing}: $S \sim \Unif(\{\pm 1\}^{E(G)})$. \begin{align*} \Ebb_S \det(xI - S) &= \Ebb_S \left( \sum_{\pi \in \Sym(X)} (-1)^{|\pi|} \prod_{y \in V} (xI - S)(y, \pi(y)) \right) \\ &= \sum_{k = 0}^n x^{n - k} (-1)^k \sum_{\substack{T \subseteq V \\ |T| = k}} \sum_{\pi \in \Sym(T)} \Ebb_S \left( (-1)^{|\pi|} \prod_{y \in T} (xI - S) (y, \pi(y)) \right) \end{align*} For $xy \in E$: $\Ebb S(x, y)^{2k + 1} = 0$, $\Ebb S(x, y)^{2k} = 1$. \begin{center} \includegraphics[width=0.3\linewidth]{images/7939ed525e9b44a6.png} \end{center} \begin{align*} &= \sum_{\substack{k = 0 \\ \text{$k$ even}}}^n x^{n - k} (-1)^k \sum_{\substack{\text{$M$ matching} \\ \text{of size $\le \frac{k}{2}$}}} (-1)^{k/2} \ldots \\ &= \sum_{k \ge 0} x^{n - 2k} (-1)^k M_k(G) \\ &= \mu_G(x) \end{align*} where $M_k(G)$ is the number of matchings of size $k$ in $G$. $\mu_G(x)$ is the matching polynomial of $G$. Heilman-Lieb-Godsil: \begin{itemize} \item $\mu_G(x)$ is real rooted for all $G$. \item If $G$ has degree $\le d$, then $\mu_G(x)$ has roots in $[-2\sqrt{d - 1}, 2\sqrt{d - 1}]$. \end{itemize}