%! TEX root = SGT.tex % vim: tw=80 % 02/05/2025 11AM ``linear algebraic methods in combinatorics'' \newpage \section{Setting} $\Omega$ a set (finite), $f : \Omega \to \Cbb$, $l^2(\Omega) \defeq \left\{f : \Omega \to \Cbb \st \sum_x |f(x)|^2 < \infty\right\}$. This generalises subsets: given $S \subseteq \Omega$, can consider $\indicator{S} : \Omega \to \Cbb$ (where $x \mapsto 1$ for $x \in S$, and $x \mapsto 0$ otherwise). When $S$ contains only a single element, we may use the shorthand $\indicator{x} = \indicator{\{x\}}$. $l^2(\Omega)$ is a $\Cbb$-vector space, equipped with the inner product $\langle \blank, \blank \rangle : l^2(\Omega) \times l^2(\Omega) \to \Cbb$ defined by \[ \langle f, g \rangle \defeq \sum_{x \in \Omega} \ol{f(x)} g(x) ,\] and a norm $\|f\|_2^2 \defeq \langle f, f \rangle = \sum_x |f(x)|^2$. Matrix over $\Omega$: $M : \Omega \times \Omega \to \Cbb$. $M(x, y) = M_{x, y}$ is the $x, y$ entry. $M$ acts on $l^2(\Omega)$: for $f \in l^2(\Omega)$, $Mf \in l^2(\Omega)$ is given by $(Mf)(x) = \sum_y M(x, y) f(y)$. $M(\alpha f + \beta g) = \alpha Mf + \beta Mg$ ($M$ is a linear map). Given $M$, $N$, can calculate \[ (MNf)(X) = \sum_y \sum_z M(x, z) N(z, y) f(y) ,\] so define $(MN)(x, y) = \sum_z M(x, z) N(z, y)$, so that the formula $(MNf)(x) = \sum_y (MN)(x, y) f(y)$ holds. Eigenthings: for $M : \Omega \times \Omega \to \Cbb$, we say that $\lambda \in \Cbb$ is an eigenvalue with eigenfunction $\varphi \neq 0$ if $M\varphi = \lambda \varphi$. \begin{fcdefn}[Hermitian] \glsadjdefn{herm}{Hermitian}{matrix}% $M$ is \emph{Hermitian} if $M = M^H$, where $M^H(x, y) = \ol{M(y, x)}$. If $M$ is Hermitian, then $\langle Mf, g\rangle = \langle f, Mg \rangle$. \end{fcdefn} \begin{fcthm}[Spectral theorem for Hermitian matrices] \label{thm:spec for herm} % result(303abbb8456840f0) Assuming: - $\Omega$ finite - $M : \Omega \times \Omega \to \Cbb$ \gls{herm} - $|\Omega| = n$ Then: there exist $\lambda_1, \ldots, \lambda_n \in \Rbb$ and $\varphi_1, \ldots, \varphi)n \in l^2(\Omega)$ non-zero such that \begin{cenum}[(1)] \item $M\varphi_i = \lambda_i \varphi_i$ \item $\langle \varphi_i, \varphi_j\rangle \indicator{i = j}$ \item $M = \sum_{i = 1}^n \lambda \varphi_i \varphi_i^H$ \item there exists $U$ orthogonal such that $UMU^H = \diag(\lambda_i)$ \item if $M$ is real, then can take $\varphi$ to be real ($\varphi : \Omega \to \Rbb$) \end{cenum} \end{fcthm} \begin{fclemma}[] % Lemma 1 Any $M$ has an eigenpair $(\lambda, \varphi)$. \end{fclemma} \begin{proof} Want $Mf = zf$ for some $z \in \Cbb$. So want $(zI - M) f = 0$ to have a non-trivial solution $f \neq 0$. This happens if and only if $zI - M$ is singular, which happens if and only if $\det(zI - M) = 0$. $z \mapsto \det(zI - M)$ is a degree $n$ polynomial in $\Cbb$ (degree $n$ since the leading term is $z^n$), so the fundamental theorem of algebra shows that there exists $\lambda \in \Cbb$ such that $\det(\lambda I - M) = 0$. \end{proof} \begin{fclemma}[] % Lemma 2 Assuming: - $M$ is \gls{herm} Then: all eigenvalues are real \end{fclemma} \begin{proof} \begin{align*} \ol{\lambda} \langle \varphi, \varphi \rangle &= \langle \lambda \varphi, \varphi \rangle \\ &= \langle M\varphi, \varphi \rangle \\ &= \langle \varphi, M\varphi\rangle \\ &= \langle \varphi, \lambda \varphi \rangle \\ &= \lambda \langle \varphi, \varphi \rangle \end{align*} Since $\varphi \neq 0$, $\langle \varphi, \varphi \rangle = \|\varphi\|^2 > 0$, hence $\lambda = \ol{\lambda}$, i.e. $\lambda \in \Rbb$. \end{proof} \begin{fclemma}[] % Lemma 3 Assuming: - $M$ \gls{herm} - $\lambda_i \neq \lambda_j$ are eigenvalues of $M$ with eigenvectors $\varphi_i$, $\varphi_j$ Then: $\langle \varphi_i, \varphi_j \rangle = 0$. \end{fclemma} \begin{proof} \begin{align*} \lambda_i \langle \varphi_i, \varphi_j \rangle &= \langle M\varphi_i, \varphi_j \rangle \\ &= \langle \varphi_i, M \varphi_j \rangle \\ &= \lambda_j \langle \varphi_i, \varphi_j \rangle \end{align*} Since we assumed $\lambda_i \neq \lambda_j$, this gives $\langle \varphi_i, \varphi_j \rangle = 0$. \end{proof} \begin{lemma}[] % Lemma 4 Assuming: - $M$ is real symmetric - $\lambda$ is an eigenvalue Then: there exists $g : \Omega \to \Rbb$ such that $Mg = \lambda g$. \end{lemma} \begin{proof} Let $\varphi = f + ig$. Then $M \varphi = Mf + iMg = \lambda \varphi = \lambda f + i\lambda g$. Hence $Mf = M\lambda$ and $Mg = \lambda g$. So either $f$ or $g$ works. \end{proof} \begin{notation*} For $f, g \in l^2(\Omega)$, $fg^H$ denotes the matrix $(fg^H)(x, y) = f(x) \ol{g}(y)$. ``$(fg^H)h = fg^H h = f\langle g, h\rangle$'' \end{notation*} \begin{proof}[Proof of \nameref{thm:spec for herm}] % proves(303abbb8456840f0) Using the above lemmas, can find $\lambda_n \in \Rbb$ and $\varphi_i : \Omega \to \Cbb$ non-zero such that $M\varphi_n = \lambda_n \varphi_n$ and $\|\varphi_n\| = 1$. Then let $M' = M - \lambda_n \varphi_n \varphi_n^H$. $l^2(\Omega) = \Span(\varphi_n) \oplus \Span(\varphi_n)^\top$. Then check that $M'$ acts on $\Span(\varphi_n)^\top$ and use induction. \end{proof} \begin{theorem}[Courant-Fischer-Weyl Theorem] % result(d54861a15c0941c1) Assuming: - $M : \Omega \times \Omega \to \Rbb$ symmetric - eigenvalues $\lambda_1 \le \ldots \le \lambda_n$ Then: \[ \lambda_k = \min_{\substack{W \le l^2(\Omega) \\ \dim W = k}} \max_{\substack{f \in W \\ f \neq 0}} \frac{\langle f, Mf \rangle}{\langle f, f \rangle} = F_k .\] \end{theorem} \begin{fcdefn}[Rayleigh quotient] $\frac{\langle f, Mf \rangle}{\langle f, f\rangle}$ is called the \emph{Rayleigh quotient}. \end{fcdefn} \begin{proof} % proves(d54861a15c0941c1) Let $W' = \Span(\varphi_1, \ldots, \varphi_k)$. Note \[ F_k \le \max_{\substack{f \in W \\ f \neq 0}} \frac{\langle f, Mf \rangle}{\langle f, f \rangle} .\] For $f \in W$, $f = \sum_{i = 1}^k \alpha_i \varphi_i$, so \[ \frac{\langle f, Mf \rangle}{\langle f, f \rangle} = \frac{\sum_{i = 1}^k \alpha_i^2 \lambda_i}{\sum_{i = 1}^k \alpha_i^2} \le \frac{\lambda_k \sum_{i = 1}^k \alpha_i^2}{\sum_{i = 1}^k \alpha_i^2} = \lambda_k .\] So $F_k \le \lambda_k$. Now suppose $W$ is a subspace with $\dim W = k$. Let $V = \Span(\varphi_k, \ldots, \varphi_n)$, and note $\div V = n - k + 1$. Note \[ \dim(V \cap W) = \dim V + \dim W - \dim(V + W) \ge k + (n - k + 1) - n = 1 .\] So for all such $W$, there exists $f \in V \cap W$, $f \neq 0$ such that $f = \sum_{i \ge k} \alpha_i \varphi_i$. Then \[ \langle f, Mf \rangle = \sum_{i \ge k} \alpha_i^2 \lambda_i \ge \lambda_k \sum_{i \ge k} \alpha_i^2 = \lambda_k \langle f, f \rangle ,\] so $F_k \ge \lambda_k$. \end{proof}