Proposition 4.32 (Stability of real stable). Assuming that:
p(zσ(1),…,zσ(n)), σ∈Sn.
p(az1,z2,…,zn), a∈ℝ≥0.
p(z2,z2,z3,…,zn).
p(c,z2,…,zn), c∈H∪ℝ.
z1d1p(−1z1,z2,…,zn).
∂z1p(z1,…,zn).
MAP(p(z1,…,zn)). MAP(z1z2+z2z32+2z1z4+z2z32)=z1z2+2z1z4.
If p,q are real stable, then so is pq.