Proposition 4.6.
Assuming that:
G
a
d
-regular graph on
n
vertices
λ
,
𝜀
>
0
,
𝜀
d
=
λ
Then
the following are equivalent:
(i)
G
is a
(
n
,
d
,
λ
)
-graph
(ii)
λ
k
(
A
G
)
∋
[
−
λ
,
λ
]
, for
1
≤
k
≤
n
−
1
(iii)
λ
k
(
L
G
)
∈
[
d
−
λ
,
d
+
λ
]
for
2
≤
k
≤
n
(iv)
λ
k
(
L
~
G
)
∈
[
1
−
λ
d
,
1
+
λ
d
]
=
[
1
−
𝜀
,
1
+
𝜀
]
for
1
≤
k
≤
n
(v)
(
1
−
𝜀
)
d
n
L
K
n
≼
L
G
≼
(
1
+
𝜀
)
d
n
L
K
n
(vi)
G
is
(
d
,
𝜀
)
-expander (also
(
d
,
λ
d
)
-expander)
(vii)
∥
L
G
−
d
n
L
K
n
∥
≤
𝜀
d
=
λ
(viii)
∥
A
G
−
d
n
J
∥
≤
𝜀
d
=
λ