Spectral Graph Theory
Lectured by Victor Souza

Contents

1Setting
2Graphs and some of their matrices
2.1Irregular graphs
3Expansion and Cheeger inequality
4Loewner order
4.1One-sided expanders
Index

“linear algebraic methods in combinatorics”

1 Setting

Ω a set (finite), f:Ω, l2(Ω):={f:Ω|x|f(x)|2<}.

This generalises subsets: given SΩ, can consider 𝟙S:Ω (where x1 for xS, and x0 otherwise).

When S contains only a single element, we may use the shorthand 𝟙x=𝟙{x}.

l2(Ω) is a -vector space, equipped with the inner product ,:l2(Ω)×l2(Ω) defined by

f,g:=xΩf(x)¯g(x),

and a norm f22:=f,f=x|f(x)|2.

Matrix over Ω: M:Ω×Ω. M(x,y)=Mx,y is the x,y entry. M acts on l2(Ω): for fl2(Ω), Mfl2(Ω) is given by (Mf)(x)=yM(x,y)f(y). M(αf+βg)=αMf+βMg (M is a linear map).

Given M, N, can calculate

(MNf)(X)=yzM(x,z)N(z,y)f(y),

so define (MN)(x,y)=zM(x,z)N(z,y), so that the formula (MNf)(x)=y(MN)(x,y)f(y) holds.

Eigenthings: for M:Ω×Ω, we say that λ is an eigenvalue with eigenfunction φ0 if Mφ=λφ.

Definition 1.1 (Hermitian). M is Hermitian if M=MH, where MH(x,y)=M(y,x)¯.

If M is Hermitian, then Mf,g=f,Mg.

Theorem 1.2 (Spectral theorem for Hermitian matrices). Assuming that:

Then there exist λ1,,λn and φ1,,φ)nl2(Ω) non-zero such that
  • (1)
    Mφi=λiφi
  • (2)
    φi,φj𝟙i=j
  • (3)
    M=i=1nλφiφiH
  • (4)
    there exists U orthogonal such that UMUH=diag(λi)
  • (5)
    if M is real, then can take φ to be real (φ:Ω)

Lemma 1.3. Any M has an eigenpair (λ,φ).

Proof. Want Mf=zf for some z. So want (zIM)f=0 to have a non-trivial solution f0. This happens if and only if zIM is singular, which happens if and only if det(zIM)=0.

zdet(zIM) is a degree n polynomial in (degree n since the leading term is zn), so the fundamental theorem of algebra shows that there exists λ such that det(λIM)=0.

Lemma 1.4. Assuming that:

Then all eigenvalues are real

Proof.

λ¯φ,φ=λφ,φ=Mφ,φ=φ,Mφ=φ,λφ=λφ,φ

Since φ0, φ,φ=φ2>0, hence λ=λ¯, i.e. λ.

Lemma 1.5. Assuming that:

  • λiλj are eigenvalues of M with eigenvectors φi, φj

Then φi,φj=0.

Proof.

λiφi,φj=Mφi,φj=φi,Mφj=λjφi,φj

Since we assumed λiλj, this gives φi,φj=0.

Lemma 1.6. Assuming: - M is real symmetric - λ is an eigenvalue Then: there exists g:Ω such that Mg=λg.

Proof. Let φ=f+ig. Then Mφ=Mf+iMg=λφ=λf+iλg. Hence Mf=Mλ and Mg=λg. So either f or g works.

Notation. For f,gl2(Ω), fgH denotes the matrix (fgH)(x,y)=f(x)g¯(y).

(fgH)h=fgHh=fg,h

Proof of Spectral theorem for Hermitian matrices. Using the above lemmas, can find λn and φi:Ω non-zero such that Mφn=λnφn and φn=1.

Then let M=MλnφnφnH. l2(Ω)=span(φn)span(φn). Then check that M acts on span(φn) and use induction.

Theorem 1.7 (Courant-Fischer-Weyl Theorem). Assuming: - M:Ω×Ω symmetric - eigenvalues λ1λn Then:

λk=minWl2(Ω) dim W=kmaxfWf0f,Mff,f=Fk.

Definition 1.8 (Rayleigh quotient). f,Mff,f is called the Rayleigh quotient.

Proof. Let W=span(φ1,,φk). Note

FkmaxfWf0f,Mff,f.

For fW, f=i=1kαiφi, so

f,Mff,f=i=1kαi2λii=1kαi2λki=1kαi2i=1kαi2=λk.

So Fkλk.

Now suppose W is a subspace with dimW=k. Let V=span(φk,,φn), and note ÷V=nk+1. Note

dim(VW)= dim V+ dim W dim (V+W)k+(nk+1)n=1.

So for all such W, there exists fVW, f0 such that f=ikαiφi. Then

f,Mf=ikαi2λiλkikαi2=λkf,f,

so Fkλk.

Notation 1.9. Define QM:l2(Ω) by QM(f)=f,Mf=x,yf(x)M(x,y)f(y).

Define qm(f)=QM(f)QI(f).

λ1(M)=minf0qM(f) and it is attained only on

Lemma 1.10. eigenfunctions of λ1.

Proof. Let f=iαiφi and Mf=iαiλiφi. Then

QM(f)=f,Mfi,jαiαjλiφi,φj=iαi2λi

and

qM(f)=iαi2λiiαi2λi.

Equality occurs here if and only if i(λ1λi)αi2=0. So αi=0 whenever λi>λ1.

Assuming:

Lemma 1.11. - φ1 is an eigenfunction of λ1. Then: λ2(M)=minfφ1f0qM(f), and it is attained only on eigenfunctions of λ2(M).

Proof.

qM(f)=iαi2λiiαi2α12λ1+(i2αi2)λ2iαi2.

So

minfφif0qM(f)λ2.

Deal with the equality case similarly to before.

In general:

λk(M)=minfφ1,,φk1f0qM(f).

(and equality case is similar to before). Also,

λn(M)=maxf0qM(f)λnk(M)=maxfφn,,φnk+1f0qM(f)

(and equality case is similar to before).

2 Graphs and some of their matrices

Graph G=(V,E): set of vertices V, |V|=n, E is a set of (unordered) pairs of vertices.

Definition 2.1 (Adjacency matrix). The adjacency matrix of a graph G is the matrix AG:V×V defined by

AG(x,y)={1{x,y}E(G)0{x,y}E(G)

Definition 2.2 (Degree matrix). The degree matrix of a graph G is the matrix DG:V×V defined by

DG(x,y)={deg(x)x=y0otherwise

Definition 2.3 (Laplacian matrix). The Laplacian matrix of a graph G is defined by LG=DA.

We can now calculate:

QA(f)=x,yf(x)A(x,y)f(y)=2xyf(x)f(y)QD(f)=x,yf(x)D(x,y)f(y)=xf(x)2 deg (x)=xf(x)2yA(x,y)=x,yf(x)2A(x,y)=12x,y(f(x)2+f(y)2)A(x,y)=xy(f(x)2+f(y)2)QL(f)=QDA(f)=QD(f)QA(f)=xy(f(x)2+f(y)22f(x)f(y))=xy(f(x)f(y))20

Corollary 2.4. For any graph G, LG is a positive semi definite matrix with eigenvector 1, which has eigenvalue 1.

Proof. Since QL(f)=xy(f(x)f(y))2, we see that QL(f)0, with equality when f is constant.

Proposition 2.5. λ2(Lg)>0 if and only if G is connected. λk(LG)=0 if and only if G has at least k connected components.

Proof.

λ2=minf1f0xy(f(x)f(y))2f,f0

Equality happens if and only if QL(f)=0, which happens if and only if f is constant on connected components. The dimension of {f:constant on connected components} is the number of connected components of G.

TODO?

TODO

TODO

2.1 Irregular graphs

A, D, L=DA, QL(f)=xy(f(x)f(y))2, qL(f)=xy(f(x)f(y))2xf(x)2.

QL(f)=f,Lf=,(DA)f=f,(2D(D+A))f=f,2Dff,(D+A)f

When G is d-regular,

L~G=1dLG=I1dAG,

λi(L~G[0,2].

qL~(f)=xy(f(x)f(y))2xd(x)f(x)2=2xy(f(x)+f(y))2xd(x)f(x)2.

Want M such that qM(f) equals the expression above. Recall qM(f)=f,Mff,f. But the above expression is f,Mff,Df.

Let D12(x,y)=𝟙x=yd(x). Assume d(x)1 for all xG. Note

qM(D12f)=D12f,MD12fD12f,D12f=f,D12MD12ff,Df.

Want D12MD12=L=DA. Define

L~G=D12(DA)D12=ID12AD12.

So

L~G={1if x=y1d(x)d(y)if xy and xy0if xy and xy

Also,

qL~G(D12f)=xy(f(x)y(y))2xd(x)f(x)2.

We have

λk(L~G)=min dim W=KmaxfWf0qL~G(D12f).

3 Expansion and Cheeger inequality

Assume G is d-regular. Write G=(V,E).

PIC

Definition 3.1 (Expansion). Given a d-regular graph G and SV, the expansion of S is

Φ(S):=e(S,VS)d|S|.

Note that 0Φ1, for example because

Φ(S)=xU(S)yN(x)(yS).

Definition 3.2 (Edge expansion). The (edge) expansion of a cut (S,VS) is defined as

Φ(S,VS):=max{Φ(S),Φ(VS)}=e(S,VS)dmin{|S|,|V|}.

Definition 3.3 (Edge expansion of a graph). The edge expansion of a graph is

Φ(G):=minSVSVΦ(S,VS)=minSV0<|S|<|V|2Φ(S).

Theorem 3.4 (Cheeger’s inequality). Assuming that:

  • G be d-regular

Then
λ2(L~G)2Φ(G)2λ2(L~G).

Consider 𝟙S:V, where 𝟙S(x)=1 if xS and 𝟙S(x)=0 otherwise. Then

QL(𝟙S)=xy(𝟙S(x)𝟙S(y))2=e(S,VS)qL~(𝟙S)=e(S,VS)d|S|=Φ(S)

Recall

λ2(L~G)=min dim W=2maxfWf0qL~G(f).

We pick W=span{𝟙S,𝟙VS}. Note

λ2(L~G)maxα,β(α,β)(0,0)qL~G(α𝟙S+β𝟙VS)maxα,β2max{qL~(G)(α𝟙S),qL~G(β𝟙VS)}

Lemma 3.5. Assuming that:

  • M is symmetric positive semi-definite

  • f,g=0

Then
qM(f+g)2max{qM(f),qM(g)}.

Proof. Let λi, φi such that f=iλiφi and g=iβiφi. Then

qM(f+g)=iλi(αi+βi)2f+g2iλi(2αi2+2βi2)f2+g2.

Then

qM(f+g)2(iλiαi2+iλiβi2f2+g2)=2(qM(f)f2+qM(g)g2f2+g2)2max{qM(f),qM(g)}

Proof of left inequality in Cheeger’s inequality. λ22max{Φ(S),Φ(VS)}=2Φ(S,VS). Then minimise over all S, to get λ22Φ(G).

Recall that

Φ(S)=qL~G(𝟙S)

and

Φ(G)=minSV1|S||V|2qL~G(𝟙S).
Fiedler’s Algorithm

Input: G,φ:V.

Output: The cut.

Running time: O(|V|log|V|+|E|).

Lemma 3.6. Assuming that:

  • ψ:V

  • ψ,1=0

  • let (S,VS)=Fiedler(G,ψ)

Then
Φ(S,VS)2qL~G(ψ).

If ψ:V, call a cut ({x:ψ(x)τ)},{x:ψ(x)<τ}) a threshold cut for ψ.

Lemma 3.7. Assuming that:

  • φ:V

  • φ,1=0

Then there is ψ:V0 such that qL~G(ψ)qL~G(ψ), |suppψ|=|{x:ψ(x)>0}||V|Q and any threshold cut for ψ is a threshold cut for φ.

Lemma 3.8. Assuming that:

  • ψ:V0

Then there is 0<tψ such that
Φ({x:ψ(x)t})2qL~G(ψ).

Proof of Lemma 3.7. If φ,1=0 then

qL~G(φ+α1)=QL~G(φ+α1)φ+α12=QL~G(φ)φ2+α2QL~G(φ)φ2=qL~G(φ)

Let m be the median of φ.

|{xV:φ(x)>m}||V|2|{xV:φ(x)<m}||V|2

φ¯=φm1, qL~G(φ¯)qL~G(φ). Let φ¯=φ¯+φ¯, where φ¯+,φ¯:V0. So

φ¯(x)={φ¯+(x)φ(x)>mφ¯(x)φ(x)<m0φ(x)=m.

Note φ¯,φ¯+=0.

Claim: either φ¯+ or φ¯ suffices.

qL~G(φ)qL~G(φ¯)=qL~G(φ¯+φ¯)=xy(φ¯+(x)φ¯(x)φ¯+(y)+φ¯(y))2φ¯+φ¯2=xy((φ¯+(x)φ¯+(y))(φ¯(x)φ¯(x))2φ¯+2+φ¯2xy(φ¯+(x)φ¯+(y))2+(φ¯(x)φ¯(y))2φ¯+2+φ¯2=qL~G(φ¯+)φ¯2+qL~G(φ¯)φ¯2φ¯2+φ¯2

Proof of Lemma 3.8. Assume ψ=1. We find 0<t1. Choose t at random, such that t2Unif([0,1]). Let

St={xV:ψ(x)>t}.

Then

𝔼|St|=x(xSt)=x(ψ(x)2>t2)=xψ(x)2.

Have

Φ(St)=e(St,VSt)d|St|.

Also, can calculate:

𝔼d|St|=dxψ(x)2𝔼e(St,VSt)=xy(xy is cut by (St,VSt))=xy|ψ(x)2ψ(y)2|=xy|ψ(x)ψ(y)|(ψ(x)+ψ(y))xy(ψ(x)ψ(y))2xy(ψ(x)+ψ(y))2

Then

𝔼e(St,VSt)𝔼d|St|qL~G(ψ)xy(ψ(x)+ψ(y))2dxψ(x)22qL~G(ψ)

Now use the following fact to finish:

Fact: If X and Y are random variables with (Y>0)=1, then (XY𝔼X𝔼Y).

(Proof: let R=𝔼X𝔼Y. Then 𝔼(XRY)=0, so (XRY0))>0, hence (XYR)>0).

Example. CN. This has λ2(L~CN=𝜃(1N2).

For SCN with |1S|12|CN|, we have e(S,VS)2. So

Φ(S)=minSV0<|S|<|V|2e(S,VS)d|S|=min1sN222s2N.

Compare with Cheeger’s inequality:

1N2<1N1N2.

Example. G=Qn, N=2n. G=Cay((2)n,{e1,,en}). We index eigenfunctions by sets T[n]. χT(x)=(1)iTxi, λT=2|T|n.

λ2(L~Qn)=2n=2logN.

Φ(Qn)22n=1n. If SQn, |S|N2, then

e(S,VS)n|S|1ne(S,VS)|S|.

Harper gives a better bound:

e(S,VS)|S|log2(2n|S|).

By considering S being half of the cube, we get

Φ(Qn)=1n=λ2(K~Qn)2.

Fiedler’s algorithm: Let f=i=1nχ{i}, L~Qnf=2nf. f(x)=i=1n(1)xi=n2|x|.

Φk=nk(nk)nj=0knj.

k=n2,

nn2n2n2n1=nn22n1n.

4 Loewner order

Definition 4.1 (Loewner order). For A, B matrices, write AB if BA is positive semidefinite. In particular, A0 if and only if A is positive semidefinite.

qA(f)=f,Aff,f=0.

AB if and only if f0,

f,Aff,ff,Bff,f.

f,Aff,Bf.

This is indeed an order: ABC implies AC

f,Aff,Bff,Cf.

If AB, then λk(A)λk(B).

λk(A)=min dim W=kmaxfWf0f,Aff,f.

AB if and only if A+CB+C.

If G is a graph, then LG0.

Definition 4.2 (eps-approximation). G is an 𝜀-approximation of H if

(1𝜀)LHLG(1+𝜀)LH.

Lemma 4.3. Given the definition M=maxf0Mff (for M symmetric), we have M=max{|λk(M)|}.

Proof. f=iαiφi, Mφi=λiφi, f2=iαi2,

Mf2=iαiλiφi2=iαi2λi2.
Mff=iαi2λi2iαi2maxk|λk|.

Lemma 4.4. Assuming: - G is an 𝜀-approximation of H Then: LGLH𝜀.

Proof. 𝜀L~HL~GL~H𝜀L~H. λk(L~GL~H)λk(L~H)2𝜀.

Definition ((d,eps)-expander). G=(V,E), |V|=n is a (d,𝜀)-expander if G is an 𝜀-approximation of dnKn.

Equivalent:

(1𝜀)dnLKnLG(1+𝜀)dnLKn.

LKn=(n1)IAKn=nIJ, where J is the all ones matrix (J(x,y)=1). If fq, then Jf=f,1f=0. In this case, LKnf=nIfJf=nf.

So λk(LKn)=n for k0.

(1𝜀)dn(nIJ)dIAG(1+𝜀)dn(nIJ)
𝜀2n(nIJ)dIAGdn(nIJ)𝜀dn(nIJ)
𝜀(dIdnJ)dnJAG𝜀(dIdnJ)

For f1, 𝜀df,ff,Af𝜀df,f.

So G is a (d,𝜀)-expander if and only if

|λk(AG)|𝜀d

for all 1kn1.

PIC

Lemma 4.5 (Expander Mixing Lemma). Assuming that:

Then S,TV,
|e(S,T)dn|S||T||𝜀dn|S||T||Sc||Tc|.

Proposition 4.6. Assuming that:

  • G a d-regular graph on n vertices

  • λ,𝜀>0, 𝜀d=λ

Then the following are equivalent:
  • (i) G is a (n,d,λ)-graph
  • (ii) λk(AG)[λ,λ], for 1kn1
  • (iii) λk(LG)[dλ,d+λ] for 2kn
  • (iv) λk(L~G)[1λd,1+λd]=[1𝜀,1+𝜀] for 1kn
  • (v) (1𝜀)dnLKnLG(1+𝜀)dnLKn
  • (vi) G is (d,𝜀)-expander (also (d,λd)-expander)
  • (vii) LGdnLKn𝜀d=λ
  • (viii) AGdnJ𝜀d=λ

Lemma 4.7 (Expander Mixing Lemma). Assuming that:

  • G=(V,E) an (n,d,λ)-graph

  • S,TV (and define e(S,T)=xSyT𝟙xyE)

Then |e(S,T)dn|S||T||λn|S||Sc||T||Tc|λ|S||T|

Proof. 𝟙S,LG𝟙T=𝟙S,(dIAG)𝟙T, 𝟙S,dI𝟙T=d|ST|.

𝟙S,AG𝟙T=xy𝟙S(x)AG(x,y)𝟙T(y)=xy𝟙xyE=e(S,T)

dnLKn=dIdnJ.

𝟙S,dnJ𝟙T=dn𝟙S,J𝟙T=dnxyJ(x,y)=dn|S||T|.

|e(S,T)dn|S||T||=|𝟙S,(dnLKnLG)𝟙T|𝟙S(dnLKnLG)𝟙T𝟙S(dnLKnLG)𝟙Tλ𝟙S𝟙T=λ|S||T| To get the better bound, we should consider functions which are perpendicular to 1: balanced function fS=𝟙S|S|n1.

LGfS=LG(𝟙Sα)=L𝟙S.

|e(S,T)dn|S||T||=|fS,(dnLKnLG)fT|λfSfT

fS2=|S|(1|S|n)2+(n|S|)(|S|n)2=|S|(12|S|n+|S|2n2)+(n|S|)|S|2n2=|S|2|S|2n+|S|3n2+|S|2n|S|3n2=|S||S|2n=n|S||S|2n=|S||Sc|n So
|e(S,T)dn|S||T|||S||Sc||T||Tc|.

If G is an (n,d,λ)-graph and IV an independent set, then

0=e(I,I)dn|I|2λn|I||Ic|.

λ|I||Ic|d|I|3.

|I|λd|Ic|=λd(n|I|).
(1+λd)|I|λdn
|I|λd(1+λd)n=λd+λn.

Hoffman bound: α(G)λd+λn.

Fix d. How small can λ be such that there is an infinite family Gn of (n,d,λ)-graphs?

Note AG2 has d in each entry of the diagonal, so

TrAG2=dn=iλi(AG2)=i(λi(AG))2.

So dnd2+(n1)λ2.

So (n1)λ2dnd2=d(nd), so

λ2d(nd)n1=d(n1(d1)n1)=d(1d1n1).

λd(1o(1)) as n.

Alon-Boppana Theorem: λ2d1o(1).

Claim: There exist families of (n,d,λ)-graphs with λ=2d1. They are called Ramanujan graphs. We will probably not prove existence of these.

Call 𝜀-Ramanujan if λ2d1+𝜀.

Theorem 4.8 (Friedman). Assuming: - 𝜀>0, n Then:

(random d-regular graph on n vertices is 𝜀-Ramanujan)1.

Maxcut in (n,d,λ)-graph:

e(S,Sc)dn|S||Sc|+λn|S||Sc|(dn+λn)n24=dn4+λn4e(G)2+λn4

Diameter, vertex expansion. SV, S={xSc:xS}.

|S||S|e(S,Sc)d|S|=Φ(S)λ2(L~G)2(1λd)2

|S|(1λd2)|S|.

Exercise: Diameter O(logn).

Vertex expansion

(n,d,λ)-graph G=(V,E). Have for all S,TV,

|e(S,T)dn|S||T||λn|S||Sc||T||Tc|.

Φv(S)=|S||S|.

PIC

|S|e(S,Sc)dΦv(S)e(S,Sc)d|S|=Φe(S) If SV, |S|n2, then ΦV(S)Φe(G)λ2(L~G)2Φv(S)(1λd)2|SS|(1+12λ2d)

n, d, λ fixed. λdδ, δ>0. |SS|(1+κ)|S| for some κ>0. Hence

|B(x,r)|(1+κ)r

if |B(x,r1)|n2.

diamG=Oλd( log n) (by considering ball around start and end).

Why aren’t Cayley graphs of abelian groups expanders?

Let Γ be an abelian group and SΓ a set of generators of size d. Let |Γ|=n. Let G=Cay(Γ,S). Then

|B(x,r)|(2r+1)d.

This is not exponential in r, so the Cayley graph can’t be an expander.

Theorem 4.9 (Alon-Boppana). Assuming that:

Then as n
λ2d1O(1).

Proof 1. Pick edge st, pick r0.

PIC

φ:V,

φ(x)={(d1)i2if xViir0if xVii>r
qL(φ)=φ,Lφφ,φφ,φ=i=0r|Vi|(d1)i.

φ,Lφ=xy(φ(x)φ(y))2=i=0r1e(Vi,Vi+1)(1(d1)i21(d1)(i+1)2)2+e(Vr,Vr+1)(d1)r=i=0r1e(Vi,Vi+1)(d1)i(11d1)2+e(Vr,Vr+1)(d1)r e(Vi,Vi+1)(d1)|Vi|. φ,Lφi=0r1|Vi|(d1)i(d11)2+|Vr|(d1)r(d1)(d11)2=(d1)2d1+1=d2d1φ,Lφ(d2d1)i=0r1|Vi|(d1)i+(d1)|Vr|(d1)r|Vr|(d1)|Vr1|(d1)ri|Vi||Vr|(d1)r1ri=0r|Vi|(d1)iφ,Lφ(d2d1)i=0r|Vi|(d1)i+(2d1)|Vr|(d1)r(d2d1+2d11r+1)φ,φλ2(L)=min dim W=2maxfWf0f,Lff,f

Suppose G has 2 deges at distance >2r+2.

PIC

f, f as above. f,f=0.

QL(αf+βf)=QL(αf)+QL(βf).

Let W=span{f,f}.

λ2(L)max(α,β)(0,0)QL(αf+βf)αf+βfα2QL(f)+β2QL(f)α2f+β2fd2d1+2d11r+1

Corollary 4.10. For all d, there are finitely many (n,d,λ)-graphs with λ<2d1.

r=clogn.

λn1(AG)2d1Od(1logn).

For Alon-Boppana:

Proof 2. TrA2k=xA2k(x,x). Note that

#{closed walks of length 2k in G starting from x}.

is at least

#{closed walks of length 2k in d starting from 0}

(d is an infinite d-regular tree). The latter is at least

(d1)k1k+12kk(2d1)2k+o(1)22k.
i=1nλi2kd2k+(n1)λ2k.

Exercise: finish details.

min{|λ1(A)|λn1(A)}

4.1 One-sided expanders

Goal is to find: Gn graphs with n vertices, d-regular such that λn1(AG)λ<d.

Reminder: (Friedman) If GGn,d uniform random d-regular graph then

(Gn is (n,d,2d1+𝜀)-graph)1.
Φ(Gn)λ2(L~G)2=λ2(LG)2d=(dλn1(AG))2d12𝜀2>0.

Theorem 4.11. Assuming that:

  • d=2l large enough

Then there is 𝜀=𝜀d>0 such that there are d-regular graphs (or multi-graphs) Gn on n vertices with Φ(Gn)𝜀 for all sufficiently large n.

Graphs Gn are as follows:

Lemma 4.12. There is c=cd>0 such that

(Gn is d-regular, i.e. Gn is simple)co(1).

Lemma 4.13. If Gn is d-regular, then there exists 𝜀=𝜀d>0 such that

(Φ(Gn)<𝜀)0.

Proof. If Φ(Gn)<𝜀 then there exists F[n], r=|F|n2, there exists F, FF and e(F,F)=d|F| and |F|=r+r, r=𝜀r.

PIC

(Φ(Gn)<𝜀)<1rn2FF[n]|F|=r|F|=r+r(πi(F)F for all i[l]).

(π1(F)F)=r+rrnr.

1rn2n!r!r!(nrr)!(r+rrnr)l.

Fact 1: akbk(ab)k if ab.

Proof: It is equivalent to

bab(a1)b(ak+1)aba(b1)a(bk+1).

Compare the product term by term.

Fact 2: n!(ne)n. Proof:

en=k0nkk!nnn!.

Using these:

n!r!r!(nrr)!nr+rr!r!=nr+r(r+r)!r+rr(2e)r+r(ne+e)r+r.

So

1rn2(2e)r+r(nr+r)r+r(r+rn)lr1rn2(2e)2r((1+𝜀)rn)r(l1𝜀)

Decompose as 1rn2=1rK+K<rn2=S1+S2. Choose 𝜀>0 small so that γ=1+𝜀2 is small. Choose l large so that γl1𝜀<12(2e)2.

S2K<rn2(2e)2r((1+𝜀)2)r(l1𝜀)K<rn2(12)r12K

Now S1.

S11rK(2e)2r((1+𝜀)rn)r(l1𝜀)(2Kn)l21rK(2e)2rcK(Kn)l

Now let K=log log log n, so this is O((log log n)nl( log log log n)l)0. Also, S112K term goes to 0.

For the lemma about (d-regular)co(1):

PIC

These are the bad things. Use Bonferroni inequalities (the partial sum of inclusion exclusion principle inequalities).

(n,d,λ)-graph

n: number of vertices, d-regular, λk(A)[λ,λ], kn.

Ramanujan graph: (n,d,2d1)-graph.

Alon-Boppana: For every 𝜀>0 fixed d3, there are finitely many (n,d,2d1𝜀)-graphs.

Bipartite: (n,d,λ)-graph, n vertices, d-regular, λk(A)[λ,λ] for kn,1.

Theorem 4.14 (Lubotsky-Phillips-Sanak / Margoulis). Assuming that:

  • p prime

  • d=p+1

  • n arbitrarily large

Then there exists a (n,d,2d1)-graph.

Goal:

Theorem 4.15 (Marcus, Spielman, Srivastava). Assuming that:

  • d3

Then there are (n,d,2d1)-bipartite graphs for arbitrarily large n.

Strategy: Bilu and Linial. Lifts of graphs:

Definition 4.16 (2-lift). A 2-lift of a graph G=(V,E) is a graph Ĝ=(V^,Ê) with

  • xV x0,x1V^.

  • xyE either x0y0,x1y1Ê or x0y1,x1y0Ê.

(and no other vertices or edges).

PIC

Definition 4.17 (Signing). S:V×V is a signing of G if

S(x,y)={±1if A(x,y)=10if A(x,y)=0

and S(x,y)=S(y,x) (symmetric). So can think of S as a function E{±1}.

AS+(x,y)=A(x,y)𝟙S(x,y)=1. AS(x,y)=A(x,y)𝟙S(x,y)=1. Have A=AS++AS, S=AS+AS.

Lemma 4.18. The eigenvalues of Ĝ are the eigenvalues of AG (old) together with the eigenvalues of S (new).

Proof.

AĜS=(AS+ASSASASS+)

Let Aφ=λφ. Then

AĜS(φφ)=(AS+φ+ASφASφ+AS+φ)=(AφAφ)=(λφλφ)=λ(φφ).

Let Sη=μη. Now

AĜS(ηη)=(AS+ηASηASηAS+η)=(SηSη)=(μημη)=μ(ηη).

Conjecture 4.19 (Bilu, Linial). If G is d-regular, then there exists a signing S:E(G){±1} whose eigenvalues are in [2d1,2d1].

Theorem 4.20 (Bilu, Linial). Can find signings S with eigenvalues λ satisfying |λ|=O(d(logd)3).

Theorem 4.21 (Marcusm, Spielman, Srivastava). Assuming that:

  • G is a d-regular graph

Then there exists a signing with eigenvalues λ with λ2d1.

Theorem 4.21 implies Theorem 4.15.

Notation. For πSym(X), let |π| be the number of inversions.

Theorem 4.21: SUnif({±1}E(G)).

𝔼Sdet(xIS)=𝔼S(πSym(X)(1)|π|yV(xIS)(y,π(y)))=k=0nxnk(1)kTV|T|=kπSym(T)𝔼S((1)|π|yT(xIS)(y,π(y)))

For xyE: 𝔼S(x,y)2k+1=0, 𝔼S(x,y)2k=1.

PIC

=k=0k evennxnk(1)kM matchingof size k2(1)k2=k0xn2k(1)kMk(G)=μG(x) where Mk(G) is the number of matchings of size k in G.

μG(x) is the matching polynomial of G.

Heilman-Lieb-Godsil:

Last time, when working on det(xIAs), we showed:

Theorem 4.22 (Godsil-Gutman, 80s).

𝔼S{±1}det(xIAs)=μG(x),

where

μG(x)=k0xn2k(1)kmk(G),

where mk(G) is the number of matchings in G with k edges.

Fact: μG(x) is real rooted.

Theorem 4.23 (Heilman-Lieb, 72). Assuming that:

  • G is d-regular

Then
maxrootμG(x)2d1.

If only we could say that maxroot𝔼Sdet(xIAs) is an average of maxrootdet(xIAh), h{±1}E. Hopelessly false:

PIC

Definition 4.24 (Interlacing). Let f be a real rooted polynomial of degree n with roots α1,,αn and g a real rooted polynomial of degree n1 with roots β1,,βn1. We say g interlaces f if

α1β1α2βn2αn1βn1αn.

PIC

Example. If f is real rooted, then so is f, and also f interlaces f.

Definition 4.25 (Common interlacement). We say that real rooted polynomials f, g of degree n have a common interlacement if there is a polynomial h of degree n+1 such that f and g both interlace h. In other words, if the roots of f and g are α1αn and β1βn respectively, then they have a common interlacement if and only if there are some γ0γn such that

γ0α1,β1γ1α2,β2γ2γn1αn,βnγn.

Theorem 4.26 (Fell 80). Assuming that:

  • f, g are real rooted

  • both degree n, monic

Then f and g have a common interlacing if and only if every convex combination of f and g are real rooted.

PIC

PIC

Proof. Assume f and g without repeated or common roots (general case requires more work and details checking).

Corollary 4.27. Assuming that:

  • f, g are real rooted of degree n

  • have a common interlacing

Then for all t[0,1]
min{maxroot(f),maxroot(g)}maxroot(tf(x)+(1t)g(x)).

Approach to Theorem 4.21:

f(x)=𝔼S{±1}Edet(xIAs), |E|=m. For h1,,hk{±1}={+,}, then

fh1,,hk(x)=𝔼sk+1,,sm{±1}(det(xIAs)|s1=h1,,sk=hk).

“Method of interlacing families of polynomials”

PIC

Theorem 4.28 (Marcus, Spielman, Srivastava (real rooted)). For every ρ1,,ρm[1,1] the following polynomial is real rooted

χρ1,,ρm(x)=S{±1}mdet(xIAs)J:sJ=1(1+ρJ2)J:SJ=1(1ρJ2).

Theorem 4.28 implies Theorem 4.21:

fh1,,hk(x)=χh1,,hk,0,0,,0(x).
μG(x)=χ0,,0(x).
tfh1,,hk,1(x)+(1t)fh1,,hk,1(x)=χh1,,hk,2t1,0,,0(x).

Theorem 4.29 (Marcus, Spielman, Srivastava (matrix)). Assuming that:

  • r1,,rmn are independent random vectors, whose support has 2 points

Then
𝔼det(xIj=1mrjrj)

is real rooted.

Theorem 4.29 implies Theorem 4.28:

χρ1,,ρm(x) is

𝔼det(xIAs).

PIC

𝔼det(xIAs) is real rooted if and only if 𝔼det((x+d)IAs) is real rooted. This equals

𝔼det(xI+(dIAs)).

Note

dIAS=xy(ex+S(x,y)ey)(ex+S(x,y)ey).

Done.

Definition 4.30 (Real stable). A polynomial p(z1,,zn)[z1,,zn] is real stable if p(z1,,zn)0 for all (z1,,zn)Hn, H={z|Imz>0}.

Notice that for a single variable, p(z) is real stable if and only if real rooted.

Example. 1z1z2.

Proposition 4.31 (Stable iff real rooted). p(z1,,zn) is real stable if and only if for all 0n, bn, the polynomial tp(at+b) is real rooted.

Proof.

Proposition 4.32 (Stability of real stable). Assuming that:

  • p(z1,,zn) is real stable

Then the following are also:
  • p(zσ(1),,zσ(n)), σSn.

  • p(az1,z2,,zn), a0.

  • p(z2,z2,z3,,zn).

  • p(c,z2,,zn), cH.

  • z1d1p(1z1,z2,,zn).

  • z1p(z1,,zn).

  • MAP(p(z1,,zn)). MAP(z1z2+z2z32+2z1z4+z2z32)=z1z2+2z1z4.

  • If p,q are real stable, then so is pq.

Proposition 4.33 (Mother of all stable polynomials). Assuming that:

  • Bd×d symmetric matrix

  • A1,,Amd×d positive semi definite

Then det(B+z1A1++znAn) is real stable.

Proof. Let a0n, bn. Assume positive definite instead of positive semi definite.

det(B+j=1n(ajt+bj)Aj)=det((j=1najAj)=:At+(j=1nbjAj+B)=:C)

A is positive definite, and C is symmetric. So

=det(At+C)=det(A12(tI+A12CA12)A12)=detAdet(tI+A12CA12)

The roots are eigenvalues of a real symmetric matrix, hence real.

Proof of Theorem 4.29. Say rj equals rj+ with probability pj+, and equals rj with probability pj. We will use Cauchy Binet:

det(AB)=det(AS×[n])det(B[n]×C)TODO

p(z1,,zn)=𝔼det(j=1nzjrjrj)=𝔼S[m]|S|=ndet(jSzjrjrj)=𝔼S[m]|S|=n(jSzj)det(jSrjrj)
det(𝔼j=1nzjrjrj)=det(j=1nzj𝔼rjrj)

is real stable since 𝔼rjrj0 is a covariance matrix.

=det(j=1mzj(pj+rj+(rj+)+pjrj(rj)))=S[m]|S|=n(jSzj)n{±1}Sdet(pjh(j)rjh(j)(rjh(j)))+“terms with squares”

So the earlier thing is real stable. So

𝔼det(j=1mzjrjrj)

is real stable. So

𝔼det(j=1mzjrjrj+j=1mxjejej)

is real stable. Take zj=1, xj=x. Then

𝔼det(xIj=1mrjrj)

is real stable.

Theorem 4.34 (Godsil). Assuming that:

  • G is d-regular

  • λ1λn are the roots of μG(x)

Then
k=1nλkl=aWal(G),

where Wal(G) is the number of closed walks of length l from a in the path tree Ta(G) of G.

Definition 4.35 (Path tree). Example: Ta(G)

PIC

Proof of ?? implies Theorem 4.23. Wal(G)Wal(d)(2d1+ol(1))l.

λnlλkl=aWal(G)n(2d1+ol(1))l.

λnn1l(2d1+ol(1)).

Take l.

Proof of ??. μG(x)=aμGa(x) Hence

ak0xn12k(1)kmk(Ga)=k0(n2k)xn12k(1)kmk(G)=μG(x)

μG(x)=xμGa(x)baμGab(x)mk(G)=mk(Ga)+bamk1(Gab)xn2k(1)kmk(G)=xxn12k(1)kmk(Ga)baxn22(k1)(1)k1mk1(Gab)aμGa(x)μG(x)=μG(x)μG(x)=j=1n1xλj=1xj=1n11λjx=1xj=1nl0λjlxl=1xl0jλjlxl Claim: μGa(x)μG(x)=1xl0Wal(G)xl. μGa(x)μG(x)=μGa(x)xμGa(x)baμGab(x)=1x111xbaμGab(x)μGa(x)=1xk0(1xbaμGab(x)μGa(x))k=1xk01xk(ba1xl0Wbl(Ga)xl)k=1xk01x2k(b1al10WGl1(Ga)xl1)(bkalk0Wbklk(Ga)xlk)=1xl0Wal(G)xl

Why? A tree-like walk in Wal(G) that visits a exactly k times is determined by:

˙

Index

(d,𝜀)-expander

𝜀-approximation

Hermitian

(n,d,λ)-graph