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Lectured by Victor Souza

May 30, 2025

Contents
1 Setting

2 Graphs and some of their matrices

2.1 Trregular graphs . . . . . . . . . L e e
3 Expansion and Cheeger inequality

4 Loewner order

4.1 Onme-sided expanders . . . . . . . . . .

Index

“linear algebraic methods in combinatorics”

11

17

25

43



1 Setting

Q a set (finite), f: Q — C, 12(Q):={f: Q= C| >, |f(z)|* < oo}.

This generalises subsets: given S C 2, can consider 1g : @ — C (where  — 1 for x € S, and z +— 0
otherwise).

When S contains only a single element, we may use the shorthand 1, = 1,;.

12(2) is a C-vector space, equipped with the inner product (e,e) : [2(Q) x [2(2) — C defined by

(f,9) =" f(x)g(x),

zeQ

and a norm || f[|3 := (f, f) = >, | f(@)]*.

Matrix over Q: M : Q x Q — C. M(z,y) = M, is the z,y entry. M acts on [2(Q): for f € [*(),
Mf € 1?(Q) is given by (M f)(x) = >y Mz, y)f(y). M(af+Bg)=aMf+BMg (M is alinear map).

Given M, N, can calculate

(MNF)(X) =YY M(z,2)N(zy)f(y),

so define (MN)(z,y) = >, M(z,2)N(z,y), so that the formula (MN f)(z) = > (MN)(z,y)f(y)
holds.

Eigenthings: for M : Q x  — C, we say that A € C is an eigenvalue with eigenfunction ¢ # 0 if
My = Ap.
e N
Definition 1.1 (Hermitian). M is Hermitian if M = M where M (x,y) = M(y, ).
If M is Hermitian, then (M f, g) = (f, Mg).

Theorem 1.2 (Spectral theorem for Hermitian matrices). Assuming that:
o () finite
o M :Q xQ — C Hermitian
e |Q=n
Then there exist A\1,...,\, € Rand ¢1,...,p)n € 12(2) non-zero such that
(1) Mo; = Aipi
(2) (pispi)li=;
(3) M =3 iy




e N
(4) there exists U orthogonal such that UMUH = diag()\;)
(5) if M is real, then can take ¢ to be real (¢ : & — R)

\

s N
Lemma 1.3. Any M has an eigenpair (A, ¢).

N J

Proof. Want M f = zf for some z € C. So want (zI — M)f = 0 to have a non-trivial solution f # 0.

This happens if and only if zI — M is singular, which happens if and only if det(z] — M) = 0.

z + det(zI — M) is a degree n polynomial in C (degree n since the leading term is z"), so the

w

fundamental theorem of algebra shows that there exists A € C such that det(A\ — M) = 0. O
Lemma 1.4. Assuming that:
e M is Hermitian
Then all eigenvalues are real
Proof.
Mo, 9) = (A, ¢)
= (Mg, )
= (¢, Myp)
= (@, Ap)
= Mg, #)
Since ¢ # 0, {p, ) = [l¢]|?> > 0, hence A = X, i.e. A € R. O
e ™
Lemma 1.5. Assuming that:
e M Hermitian
e \; # A; are eigenvalues of M with eigenvectors ¢;, ¢;
Then (p;, p;) = 0.
N J
Proof.
Ailpis @) = (Mi, ¢5)
= (i, M ;)
= Aj (@i 5)



Since we assumed \; # A, this gives (p;, ;) = 0. O

Lemma 1.6. Assuming: - M is real symmetric - A is an eigenvalue Then: there exists g : Q@ — R
such that Mg = Ag.

Proof. Let ¢ = f 4+1ig. Then Mo = Mf+iMg = A p = Af +iAg. Hence M f = MX and Mg = Ag.
So either f or g works. O

Notation. For f,g € I2(2), fg" denotes the matrix (fg™)(z,y) = f(x)g(y).
“(fg")h = fg"'h = flg,h)”

Proof of Spectral theorem for Hermitian matrices. Using the above lemmas, can find A, € R and ¢; :
 — C non-zero such that M, = A\ ¢, and [|@,|| = 1.

Then let M’ = M — X\, on0H. 12(2) = span(y,,) ®span(p,) . Then check that M’ acts on span(ip,) "
and use induction. O

s D
Theorem 1.7 (Courant-Fischer-Weyl Theorem). Assuming: - M : Q x 2 — R symmetric -
eigenvalues \; < ... < A, Then:

(f, M f)

Ar = min max ———— = F}.
w<iz@) few (f, f)
dim W=k f#0

Definition 1.8 (Rayleigh quotient). Ug;‘;{{ ! is called the Rayleigh quotient.

Proof. Let W’ = span(¢1, ..., ¢r). Note

For f € W, f =Y, aigi, s0

(f,Mf) _ Zf:10%2>‘i < )‘ka:10‘i2 —
= = Ak.

(L) Shia2 T R a2

1=

So Fi < M.



Now suppose W is a subspace with dim W = k. Let V = span(¢x, ..., ¢n), and note =V =n — k+ 1.
Note
dim(VNW)=dimV +dimW —dim(V+W)>k+(n—k+1)—n=1

So for all such W, there exists f € VNW, f # 0 such that f = Zizk a;p;. Then
(FMF) =302\ >\ a2 = Nl f),
i>k i>k
SO Fk Z )\k O

Lecture 2

Notation 1.9. Define Qu : 1*(Q) — C by Qu(f) = (f, M[f) = 3, , f(@)M(z,y)f(y)-

Define ¢, (f) = %1‘147(%)

A1 (M) = ming»oq,,(f) and it is attained only on

e N
Lemma 1.10. eigenfunctions of A;.
N J

Proof. Let f =3, c;0; and M f =", a;Nip;. Then
Qu(f) = (f, Mf)
> aiahi(ei9;)
4,J

and > 2
SO
il = e 2
Equality occurs here if and only if >, (A1 — A\;)a? = 0. So a; = 0 whenever \; > ;. O
Assuming;:

Lemma 1.11. - ¢4 is an eigenfunction of A;. Then: A\g(M) = ming | ,, g,,(f), and it is attained
f#0
only on eigenfunctions of Ay (M).

Proof.




So

Deal with the equality case similarly to before.

In general:

A(M) = min  qp(f).
fLlet,.,pr—1
f#0

(and equality case is similar to before). Also,

A (M) = r}{lgng(f)

An—k(M) = max an ()
flen, sPn—k+1
f#0

(and equality case is similar to before).



2 Graphs and some of their matrices

Graph G = (V, E): set of vertices V, |V| = n, E is a set of (unordered) pairs of vertices.

-

Definition 2.1 (Adjacency matrix). The adjacency matriz of a graph G is the matrix Ag :
V x V — R defined by

1 {z,y} € E(G)

Fele) = {o {e.} ¢ B(G)

Definition 2.2 (Degree matrix). The degree matriz of a graph G is the matrix Dg : VXV — R
defined by

deg(@) ==y
D ,Y) =
a(,y) {0 otherwise

Definition 2.3 (Laplacian matrix). The Laplacian matriz of a graph G is defined by Lg =
D - A.




We can now calculate:

Qa(f) =>_ f@)A(z,y)f(y)

z,y

=2 f(2)f(y)

T~y

Qp(f) =Y f@)D(x,y)f(y)

T,y

=3 (@) deg(x)
=3 F@)? Y Aly)
=3 f@)?Al,y)

- % > (f(@)* + f)H) Az, y)
=2 (f@)° + f()*)

Qr(f) =Qp_alf)
=Qp(f) —Qa(f)

=3 (f(@)*+ f()* = 2f(x) f(v))

T~y
= (@) - fw)?
Ty
>0
Corollary 2.4. For any graph G, L¢g is a positive semi definite matrix with eigenvector 1,
which has eigenvalue 1.

Proof. Since Q,(f) =>_,.,(f(z) — f(y))?, we see that Q, (f) > 0, with equality when f is constant.
O

Proposition 2.5. A\y(L,) > 0 if and only if G is connected.  Ax(Lg) = 0 if and only if G has
at least k connected components.

Proof. ,
o=y Dol SO
170 ’



Equality happens if and only if @ (f) = 0, which happens if and only if f is constant on connected
components. The dimension of {f : constant on connected components} is the number of connected
components of G.

TODO? O

Lecture 3 TODO

Lecture 4 TODO

2.1 Irregular graphs

A, D L =D~ A, Quf) = Tuu (F@) = Fu)?, s () = Exgl i,
Q) = 1L

(D - A))

(2D — (D + 4)f)

(
=
=(/,
= ([,2Df) = {}.(D+ A)f)

- =

When G is d-regular,
= 1 1

L(;:gLGZI_gAG,
Ni(Lg €[0,2].
q; (f) = D any(f(2) — f)? o D wmy (f2) + f(y))?
e ()] () S, d@) @)
Want M such that g,,(f) equals the expression above. Recall ¢,,(f) = <J<‘fJV;{) But the above

expression is %.

Let D2 (z,y) = Ly=y+/d(x). Assume d(z) > 1 for all z € G. Note

(D2 f,MD>f) _(f,DZMD:f)
(D3 f, D3 f) (f,Df)

QM(D%f) =

Want D2 MD? = L = D — A. Define

Le=D3*(D—-AD 2=I-D 32AD" 3.
So
1 ifx=y
Lg= —m ifr#yandz~y
0 ifr#yand xz ALy



Also,

We have

Doy (f(@) = y(y))?

20 PH) = = Ty

. 1
Mul(le) = dim W=k few Lo (D=f)-
f#0

10



3 Expansion and Cheeger inequality

Assume G is d-regular. Write G = (V, E).

Scl

Y\S

Definition 3.1 (Expansion). Given a d-regular graph G and S C V, the expansion of S is

B(S) = S(S’d‘|f9|\ 5)

Note that 0 < ® < 1, for example because

O(S) =Prv(s)(y ¢ 9).

y~N(z)
-
Definition 3.2 (Edge expansion). The (edge) expansion of a cut (S,V '\ S) is defined as
e(S,V\59)
O(S,V\S) :=max{P(5),(V\S)} = . .
dmin{|S], [V'\ [}
N
e
Definition 3.3 (Edge expansion of a graph). The edge expansion of a graph is
O(G) := i (S, V\S) = Sy o(9).
0£S#V 0<|S[<|V]/2
N

11



Theorem 3.4 (Cheeger’s inequality). Assuming that:
¢ G be d-regular

Then
A2 (L)
2

<®(G) < V2x(Lla)

.

Consider 1s : V — R, where 1g(z) =1 if z € S and 1g(x) = 0 otherwise. Then

Qr(ls) = Y (Ls(x) — 1s(y))* = e(S, V' \ 5)

T~y

qi(ls) = W = ®(S)

Recall

Ao (Lg) = diénvivr1:2§,réav>chic(f)~
F#£0

We pick W = span{lg, 1y s}. Note

A2(Lg) < max i, (als + Blyys)
(@,8)#(0,0)
< r23%)(2HH"LX{CIL(G)(041[5)7qic (Bly\s)}

Lemma 3.5. Assuming that:
e M is symmetric positive semi-definite

e (f,9)=0

Then
au(f +9) < 2max{q (f), qr(9)}-

Proof. Let \;, ¢; such that f =", N\jg; and g =), Bip;. Then
il +8:)7 _ i N(2af +287)

wlf+9) = = E S TR e
Then
S hiad + 30 B
(1 +9) <2 (S
o (DR + aa (@)l
=2 1717+ Tl )

< 2max{q (f),qn(9)}

12



Lecture 5

Proof of left inequality in Cheeger’s inequality. Ao < 2max{®(S),®(V \ S)} = 2®(S,V \ S). Then

minimise over all S, to get A2 < 29(G). O
Recall that
®(5) = qj,,(1Ls)
and
®(G) = min 5. (Ls).
1<IS|<IV]/2
Fiedler’s Algorithm
Input: G,p:V - R.
o Sort vertices x1,...,x, such that p(z1) < - < p(x,).
o Find cut K that minimises ®({za,..., 2%}, {Trt1,-- - 2n}).
Output: The cut.
Running time: O(|V|log |[V| + | E|).
s N
Lemma 3.6. Assuming that:
. w V>R
e (¥, 1)=0
o let (S,V'\ S) = Fiedler(G, v)
Then
Ify: V=R callacut ({z:¢(x) > 1)}, {x: ¢¥(x) < 7}) a threshold cut for 9.
e N
Lemma 3.7. Assuming that:
e p: V - R
c (p1)=0
Then there is ¢ : V' — Rx¢ such that g (¢)) < gz (%), [suppy| = {z : ¢(z) > 0} < %—‘ and
any threshold cut for % is a threshold cut for ¢.
L J

13



Lemma 3.8. Assuming that:
o ¢ V= RZO

Then there is 0 < ¢ < ||¢|| such that

O({z: p(x) 2 t}) < /245, (¥).

Proof of Lemma 8.7. If {p,1) = 0 then

_ Qiglptal)
o + a2
_ Qi)
oll? + a2
Qi (®)
< G
llo]|?

=qz,(p)

4. (p+al)

Let m € R be the median of .

2
p=9—-ml, q; (@) <q; (). Let =71 =5, where 5+, 5~ : V — Rxo. So

)>m
P(x)=q -9 (2) (@) <m.
0 p(x) =m
Note (¢, 9") = 0.
Claim: either " or %~ suffices.
17, (») > 45, (P)
=5, —7")
ey @ (@) 7 () ~ T () + T ()
- " -2 |
ey (@ (@) -7 (y) — (7 (@) ~ 7 (2))?
a Z* 12 + %112
Doy @ (@) =T () + (7 (2) T ()
- IZ*11% + 112~ |12
_ 45, @)IRI* + 4z, @)le” |1?
21> + 7™ |12

14



Lecture 6

Proof of Lemma 3.8. Assume ||¢|lo = 1. We find 0 < ¢t < 1. Choose t at random, such that ¢> ~
Unif ([0, 1]). Let
Se={x eV :ux) >t}

Then
ES| =Y P(z € S) ZIP’ )2 > 1) = ()’
Have (S, V\ S))
€\, t
d(S) = —————=.
( t) d|St|

Also, can calculate:
Ed|S¢| = dz ¢($)2

Ee(St, V \ S) = ZP(ch is cut by (S¢, V'\ St))

T~y

=) [v(z)® = v(y)?

xr~Yy

= [e(x) — v (@) + ¢(y))

D (W) —v)? - > (W) + ()2

T~y vy

Then

Ee(S,V\ ) _ D ay (¥ ( ))?
Ed|S,| = V4 \/ dz 1/1
2qz,,(¥)

Now use the following fact to finish:

Fact: If X and Y are random variables with P(Y > 0) = 1, then P (% < %).

(Proof: let R = £%. Then E(X — RY) =0, so P(X — RY <0)) > 0, hence P(£ < R) > 0).

Example. Cy. This has \o(Lcy = 6 (#z)-
For § C Cy with |1 < 5| < £|Cy|, we have e(S,V '\ S) > 2. So

B e(S,V\S) 2 2
®(5) = énclv CdlS] T 1dsen22s T N
0<|S|<|V]/2

15



Compare with Cheeger’s inequality:

1
N2

Example. G = Q,,, N = 2". G = Cay((Z/2Z)",{e,
sets T C [

’I’L] XT(-T) = (—1)Z¢€T T Ap
MIg)=2= 2

.yen}). We index eigenfunctions by
_ 2|7

=

n log N *

P(Qn) > & =2, If S C Qn, |S| < N/2, then

e(S,V\ S)

1
> = S,V\S)>|S].
G2y = SV\S)2s
Harper gives a better bound:

e(S,V\ S) > |S|logy <2n>

ISl
By considering S being half of the cube, we get

Fiedler’s algorithm: Let f = >"7" | x{} Lo, f= 2f flx)=X

B(Qu) = + = 2252,

?:1(_1)% =n —2|z|.
(o) (n — k)
Py = P~
* ”Z?:o (?)
%7

16



4 Loewner order

Definition 4.1 (Loewner order). For A, B matrices, write A < B if B — A is positive semidef-
inite. In particular, A = 0 if and only if A is positive semidefinite.

A
qa(f) = <{f,f];> =

A < Bifand only if Vf # 0,
(£,Af)
(£, )

(f,Bf)
(£,

<
([, Af) <A{f,Bf).
This is indeed an order: A < B < C implies A < C

(f.Af) <(f.Bf) <(f.Cf).
If A< B, then )\k(A) < )\k(B)

: (f,Af)
A(A) = min max .
s S (7 7)

A< Bifandonlyif A+C < B+C.

If G is a graph, then Lg < 0.

p

Definition 4.2 (eps-approximation). G is an e-approzimation of H if
(1-e)ly < Lg<s(1+¢)Ly.

N

p
Lemma 4.3. Given the definition ||M|| = max o ”ﬂ%” (for M symmetric), we have || M| =
max{|Ax(M)]|}.

N

Proof. f =%, aipi, Mp; = Ngs, ||[f]> =3, 02,

2
D kg = aiA,
i i

i[5 aiR
— 2 1 3 < .
7l Star =

IIMf||2=‘

[ Lemma 4.4. Assuming: - G is an e-approximation of H Then: ||[Lg — Ly|| < e.

17



Proof. —Ei/H < .Z/G — ﬂH < EI/H. )\k(ﬂg — IN/H) < )\k(f/H) < 2e. O

Definition ((d,eps)-expander). G = (V,E), |V| = n is a (d,e)-ezpander if G is an e-
approximation of %Kn.

Equivalent:
d d
(1—-¢)—Lk, < Leg<x(1+¢)—Lg,.
n n
Lk, = (n —1)I — Ak, = nl — J, where J is the all ones matrix (J(z,y) = 1). If f L g, then

Jf:Tf,1>f:0. In this case, Lk, f=nlf —Jf =nf.

So )\k(LKH) =n for k > 0.
d d
(1 —e)ﬁ(nl— J)=xdl —Ag = (1 +e)5(nl— J)

2
(nI—J)#dI—Ag—g(nI—J)ﬁs (nl —J)
n

—e—
n

S

f{-:(dffé]) <éJ—AG<5(d1—§J)
n n n

For f L1, —ed(f, f) < —(f, Af) < ed(f, f).

So G is a (d, e)-expander if and only if
[Me(Ag)| < ed

foralll1 <k <n-1.

Lemma 4.5 (Expander Mixing Lemma). Assuming that:
e G is d-regular

o G isa (d,e)-expander

d ed
e(S.7) = S181171| < 5/ ISTITTISeIT

Then VS, T C V,

Lecture 7

18



Proposition 4.6. Assuming that:

e G a d-regular graph on n vertices

e \e>0,ed=A\
Then the following are equivalent:

(i) G is a (n,d, \)-graph

(Ag) 3 [\ A for 1<k <n-1
i(Lg)€ld— A d+ N for2<k<n
lo)e[1-3,1+2]=[1-e,1+e]for1<k<n

i) A
(iii) A
iv) A
(v) 1—e)iLk, < Le < (1+¢e)Lk
)
)
iii)

p
Lemma 4.7 (Expander Mixing Lemma). Assuming that:

e G=(V,E) an (n,d, \)-graph
e S,T CV (and define e(S,T) =3, c5 > yer Luyer)
Then

d A
e(5,T) - n|5|T|’ < CVISISeNT]Te]
< AISIIT

Proof. (1s,Lglr) = (1s,(dI — Ag)lr), (Ls,dI1r) =d[SNT].

(1s, Aclr) = Zzls JAc (2, y)1r(y)
- Zzlmy€E
z oy

=e(5,T)

n

Lk, =dl —2J.

d d
(Ls, —J1r) = —(Ls, Jlr) = ZZny —|S||T|.

19



e(S,T) — Z|S||T|' - '<115, (%Lm - LG) 11T>

SHISH‘(ZLKﬁ-LG)ﬂT

< 11sl| (42, - 26) 1121
< Mslital

— »/ISIIT

To get the better bound, we should consider functions which are perpendicular to 1: balanced function
fs =151,

Lgfs = Lg(]ls — a) = L]ls.

e(s.7) - 2isiirl| =| (75, (S, ~ 26) fr)

< AMlfslllfrll
2—5( ISI)2 g ( SI)2
Ifsl? =181 =) +m—ISh{-—
2|8 S|? S|2
:|S|<lf%+%)+(n—|5|)|7|2

21812 ISP 1S)2 |S)?
S2
s 18P
_ nlS|—S]?
- n
EIES
n

So
d
e(S.7) = S181171| < SIS 0
If G is an (n,d, A)-graph and I C V an independent set, then
d A
0=e(l,I)>—|I]* - =|I||I°.
n n

NI > dP.
A A
I < 2|1 = Z(n — |1)).
11 < 17 = S0 = 11))

A A
Z <2
(1+d>|l|*dn

20



A n = A n
(1+3)  d+x

1] <
d

Hoffman bound: a(G) < d%\n.

Fix d. How small can A be such that there is an infinite family G,, of (n,d, A)-graphs?

Note A2G has d in each entry of the diagonal, so

Tr A% = dn = Z)\i(Aé) = Z()\i(AG))Q.
So dn < d* + (n — 1)A\%
So (n—1)A? > dn — d? = d(n — d), so
d(n_d):d(n_l_(d_l)):d(l—d_l).

)\2
n—1 n—1 n—1

Y

A >Vd(1—0(1)) as n — oo.
Alon-Boppana Theorem: )\ > 2v/d — 1 — o(1).

Claim: There exist families of (n, d, \)-graphs with A = 2v/d — 1. They are called Ramanujan graphs.
We will probably not prove existence of these.

Call e-Ramanujan if A > 2v/d — 1+ ¢.

Theorem 4.8 (Friedman). Assuming: - € > 0, n — oo Then:

P(random d-regular graph on n vertices is e-Ramanujan) — 1.

Maxcut in (n,d, A)-graph:

e(S, S)

IN

d (& A (&
215157+ 218115°

(42
n n/ 4

_dn | An
1T
<€(G)+/\£
-2 4

IN

Diameter, vertex expansion. S CV, 39S ={z € S¢: 2z ~ S}.

0S| _ (8,59 Ao(La) _ (1-2)
WZ d|S| =25 = =5 2d

21



05| = (+324) IS.

Lecture 8 Exercise: Diameter O(logn).

Vertex expansion
(n,d, \)-graph G = (V, E). Have for all S, T CV,

d A
e(S,T) - nlsllTl‘ < CVISISeNT]Te-

®,(S) = 175

e(S, 89

0S| >

e(S, S°)
5.(5) = 152

= q)e(S)

If SCV,|S| <n/2, then

S Ne(La)
- 2
1-—2
‘I)v(S)Z( 2(1)
1 /\)
> - _
|SUOS| (1+2 o

n— o0, d, Afixed. A<d—46,6>0.|SUIS| > (1+ k)|S| for some xk > 0. Hence
[B(z,r)| = (1+ k)"
if [B(z,r—1)] <n/2.

diam G = O 2 (logn) (by considering ball around start and end).

22



Why aren’t Cayley graphs of abelian groups expanders?

Let I be an abelian group and S C T a set of generators of size d. Let |I'| = n — co. Let G = Cay(T", S).
Then
|B(z,7)| < (2r + 1)

This is not exponential in r, so the Cayley graph can’t be an expander.

Theorem 4.9 (Alon-Boppana). Assuming that:
o G=(V,E) an (n,d, \)-graph

Then as n — o

A>2V/d—1-0(1).

Proof 1. Pick edge st, pick r € Z>q.

P -
L - Vo= Tee i A Gofsk) =13
y -

\/i \/z

Ve
T
- AT u‘i\?dz <m

p: V=R,
(2) = (d—1)""2 ifxeV,i<r
270 ifzeV,i>r
_ {p, L) v

(0, Lo) = > (p(x) — e(y))

T~y
r—1 2
1 1 S(VT,VT_H)
:Ze(‘/ia‘/i-i-l)( 73 ; ) t
— (d—1)7/2  (d—1)0+D/2 (d—1)
eV Vi) ( 1 )2 e(Vy, Vi)
— (d—1) d—1 (d—1)"

23




e(Vi, Vi1) < (d— 1)[Vi].

(p,Lp) < ; (d|Vl|1)z (Vd—1-1)*+ (d|VTl)r (d—1)
(Vd—1-1)? =d-1)-2Vd—1+1=d—-2Vd -1
r—1
(¢, L) < (d —2vVd — 1); (d|VZ|1)z +(d— 1)(d|VTl>T
Vol < (d =DV < < (d = 1)V
Vil _ 1~ |V
-y Sy
i) <@ 2D i
< (d—z\/ﬁ+2”i+lll) (v, )
— (f,Lf)
= All) = mip e

£#0

Suppose G has 2 deges at distance > 2r + 2.

i

[, [ as above. (f, f') = 0.
Qrlaf+Bf")=Qr(af)+QL(Bf).
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Let W = span{f, f'}.

Qrlaf +Bf")
ML) S e o el + AP
?Qr(f) + B2QL(f)
o[ fIl + B2 £l

2\/ -1-1
<d-2Vd BT

[ Corollary 4.10. For all d, there are finitely many (n,d, A)-graphs with A < 2v/d — 1.

r = clogn.

1
er(de) 2 2T - 04 ().
logn
For Alon-Boppana:

Proof 2. Tr A%k =Y~ A%*(z,z). Note that
#{closed walks of length 2k in G starting from z}.

is at least
#{closed walks of length 2k in H starting from 0}

(I1, is an infinite d-regular tree). The latter is at least

(d o 1)kﬁ <2kk> ~ (2 /d — 1)2k+0(1)22k.
< Z AE < dPF 4 (n— 1N,

Exercise: finish details.

Lecture 9 min{|A1(A4)|An-1(4)} > -

4.1 One-sided expanders

Goal is to find: G,, graphs with n vertices, d-regular such that \,_1(Ag) < A < d.
Reminder: (Friedman) If G ~ G, ¢ uniform random d-regular graph then

P(G, is (n,d,2vd — 1 + €)-graph) — 1.
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Xo(La) _ Ho(Lg) _ (d=u1(Ag))
®(Gn) 2 2 2d 2d =

N | =
DO| ™

Theorem 4.11. Assuming that:
e d = 2[ large enough

Then there is € = ¢4 > 0 such that there are d-regular graphs (or multi-graphs) G,, on n vertices
with ®(G,,) > ¢ for all sufficiently large n.
\ J

Graphs G,, are as follows:

o V(G,)=In],d=2l.
o Take 7y,...,m : [n] = [n] uniform independent permutations.

o Set
E(Ga) = {{o,mi(@)} s @ € [n],i € [1}.

Lemma 4.12. There is ¢ = ¢4 > 0 such that

P(G, is d-regular, i.e. G,, is simple) > ¢ — o(1).

Lemma 4.13. If G,, is d-regular, then there exists € = ¢4 > 0 such that

P(®(Gn) < &) — 0.

Proof. If ®(Gy,) < € then there exists F' C [n], r = [F'| < §, there exists F', FF C F' and e(F, F') = d|F)|
and |F'| =7+, 7" = |er].

P(m;(F) C F’ for all i € [1]).




n! !
P< Z r!r’!(n—r—r’)!<((2))> '

1<r<% T
Fact 1: (i’g)
()

Proof: It is equivalent to

< ()" ifa<b.
ba-bla—1)---bla—k+1)<ab-a(b—-1)---
Compare the product term by term.

Fact 2: n! > (%)n Proof:

TL n
%;z* e

Using these:

| r+r' r+r' / ,
n! Sn _n r4+r < (2 <
rlr'l(n —r —7r')! rlr'l (r 4! r

So
r+r’ I\ T
P Y o () (TR0
142 r+r n
r(l—1—¢)
c 5 g (022
1<r<n "
Decompose as 3 1<, <0 = 21<,<k JrZK<r<n/2 =

small. Choose [ large so that v/~17¢ < 2(26)2

Sy < Z (2¢)%" ((1 J2r 5))“1—1—6)

K<r<3g

27

a(b—k+1).

n r4r’
e+ e’) ’

S1 4+ S3. Choose € > 0 small so that v = % is



Lecture 10

Now Sl.

2 (Lt e)r)
SlglggK(Qe) ( e )
2

2K -2
<(5)
n
1<r<K

l
< K (5)
n

Now let K = logloglogn, so this is < O((loglogn)n~!(logloglogn)') — 0. Also, S; < 5k term goes
to 0. O

(26)27"

For the lemma about P(d-regular) > ¢ — o(1):

ﬂ‘(x\)j (T, 'L(ac\

, iﬁ 6o = TG
7 2

¢

ﬂ T,’Kx)fﬂ,’/i () @ 11, )=x
4 ) s

These are the bad things. Use Bonferroni inequalities (the partial sum of inclusion exclusion principle
inequalities).

(n7 d7 A)_graph

e[\l k#n.

n: number of vertices, d-regular, A;(A)

Ramanujan graph: (n,d,2v/d — 1)-graph.

o Petersen (10,3, 2+/2)-graph.
o Complete (bipartite), d = n — 1 big :(.
o Paley Cay(Z/pZ,{z*:x € Z/pZ,x #0}), p=1 (mod 4). d = E5* big :(.

Alon-Boppana: For every ¢ > 0 fixed d > 3, there are finitely many (n,d,2v/d — 1 — ¢)-graphs.

Bipartite: (n,d, \)-graph, n vertices, d-regular, Ap(A) € [\, A] for k # n, 1.
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Theorem 4.14 (Lubotsky-Phillips-Sanak / Margoulis). Assuming that:
e p prime
e d=p+1
e n arbitrarily large

Then there exists a (n,d, 2v/d — 1)-graph.

\
Goal:
p
Theorem 4.15 (Marcus, Spielman, Srivastava). Assuming that:
e d>3
Then there are (n,d,2v/d — 1)-bipartite graphs for arbitrarily large n.
.

Strategy: Bilu and Linial. Lifts of graphs:

Definition 4.16 (2-lift). A 2-lift of a graph G = (V, E) is a graph G = (V, E) with
e zeV = xo,xlev.
e Iy E E — ecither ToYo,T1Y1 € E or ToY1,T1Yo € E

(and no other vertices or edges).
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Definition 4.17 (Signing). S : V x V — R is a signing of G if

+1 if A(z,y) =1

Szy) = {O if A(z,y) =0

and S(z,y) = S(y,z) (symmetric). So can think of S as a function £ — {£1}.
L

AJSr(x,y) = Az, y)Ls@zy)=1- Ag(z,y) = A(z,y)lg(z,y)=—1. Have A = A; +Ag, 8= Ag - Ag.

Lemma 4.18. The eigenvalues of G are the eigenvalues of Ag (old) together with the eigen-
values of S (new).

Proof.
A - (A;C ASST)
G \Ag ASg

16.(9) = (221459 = (39) = (00) =2 (2)-
Gs \p Agp+ Al Agp A ©

o ()~ CE A0 - (30) - () ()
Gs \=n Agn — Agn —Sn —pn -/’

Let Ap = Ap. Then

Conjecture 4.19 (Bilu, Linial). If G is d-regular, then there exists a signing S : F(G) — {£1}
whose eigenvalues are in [—2v/d — 1,2+/d — 1].

Theorem 4.20 (Bilu, Linial). Can find signings S with eigenvalues A satisfying |\ =

O(/d(log d)?).

Theorem 4.21 (Marcusm, Spielman, Srivastava). Assuming that:

e ( is a d-regular graph

Then there exists a signing with eigenvalues A with A\ < 2+/d — 1.

Theorem 4.21 implies Theorem 4.15.

o Start with Kg 4.
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o Keep applying Theorem 4.21 to find signing.
e Build lift with that signing.
o 2-lift of bipartite graph is bipartite.

e Spectrum of adjacency matrix of bipartite graph is symmetric around 0.

Notation. For 7 € Sym(X), let |7| be the number of inversions.

Theorem 4.21: S ~ Unif ({£1}7().

Egdet(al — S) =Eg Z (—1)‘Tr| H (I = 9)(y,m(y))

meSym(X) yeVv
=S R YT N Es [ ()T ] @l - S) (. (y))
k=0 ‘T%VI; meSym(T) yeT
Tl=

For xy € E: ES(z,y)**! =0, ES(xz,y)%* = 1.

7

)

3

S ) L W G DL

k=0 M matching
€ of size < &

_ {En_2k(—1)kMk(G)

where M (G) is the number of matchings of size k in G.
te(x) is the matching polynomial of G.

Heilman-Lieb-Godsil:
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Lecture 11

o () is real rooted for all G.

o If G has degree < d, then ug(z) has roots in [—2v/d — 1,2v/d — 1].

Last time, when working on det(xI — Ay), we showed:

p
Theorem 4.22 (Godsil-Gutman, 80s).
Es 1} det(zl — As) = pe(),
where
ne(x) =Y " 2 (=1 mu(Q),
k>0
where my(G) is the number of matchings in G with &k edges.
. J
Fact: pg(x) is real rooted.
s N
Theorem 4.23 (Heilman-Lieb, 72). Assuming that:
e (@ is d-regular
Then
maxroot pg(z) < 2vd — 1.
_ J

If only we could say that maxroot Eg det(x] — Ay) is an average of maxroot det(z] — Ap), h € {£1}F.

Hopelessly false:

N

-

Definition 4.24 (Interlacing). Let f be a real rooted polynomial of degree n with roots
ai,...,a, and g a real rooted polynomial of degree n — 1 with roots Sy, ...

g interlaces f if

ap <P << < Bho<an_1 < Bt L ap.

yBn—1. We say
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Example. If f is real rooted, then so is f’, and also f’ interlaces f.

Definition 4.25 (Common interlacement). We say that real rooted polynomials f, g of degree
n have a common interlacement if there is a polynomial h of degree n + 1 such that f and g
both interlace h. In other words, if the roots of f and g are a; < ---a, and 1 < --- < B,
respectively, then they have a common interlacement if and only if there are some vy < --- < 7,
such that

Yo<a,bfi<m<az,fe<7 < <Y1 <A, Bn < Y

Theorem 4.26 (Fell 80). Assuming that:
e f, g are real rooted
e both degree n, monic

Then f and g have a common interlacing if and only if every convex combination of f and g
are real rooted.
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Proof. Assume f and g without repeated or common roots (general case requires more work and details
checking).

< Let he(x) = tf(z) + (t — 1)g(z) for t € (0,1). We know these are real rooted, and waht to
show that f, g have a common interlacement. Let X\;(t) be the i-th root of h:(x). A;(t) includes
(Xi(0), Ai(1)) € R.
Claim: (A;(0), A7(1)) are disjoint.
Suppose not. Let g be a root of f and Ay € (A;(0),Ar(1)). So there exists t € (0,1) such that
Ar(t) = Ag.
he(Ae) = 0 =tf (M) + (1 =) g(Ax),

so g(Ax) = 0, contradiction as we assumed no common roots.

The dots represent the roots of the polynomial that interlaces them. By monicness, we get the blue
and green +s and —s. Then get the orange ones, and use intermediate value theorem. O

Corollary 4.27. Assuming that:
e f, g are real rooted of degree n

e have a common interlacing
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Then for all ¢ € [0, 1]

min{maxroot(f), maxroot(g)} < maxroot(tf(x) + (1 — t)g(x)).

Approach to Theorem 4.21:
f(r) = Egeqgrye det(xl — Ay), |E| =m. For hy,... hy € {£1} = {+, —}, then

Jrah () =By serry(det(z] — Ag) | s1 = hy, ..., s = hy).

“Method of interlacing families of polynomials”

rEa(/ (23 yt‘)\ )
LGN | onmd <o

/ - —_CD Co MMON
% |
| — ﬁ [ rrip{ ~roo z)\ ﬁ, (7[\ P(o—[’fcvj'fd : /\k'( r\N‘ynU
Wﬂwb < 7\@\1 t * QTAJWT'\E\/( f%(w?, - L—é’/\ 38/‘(’ ot
- of Hoan -

Mw}'

6] L

Comtop A
- —_—

/

the following polynomial is real rooted

Xp1,mepm (%) = Z det(x] — As) H (H_TPJ> H (1—2,0J)_

Se{£1}m™ J:sg=1 J:S;=—1

.

Theorem 4.28 (Marcus, Spielman, Srivastava (real rooted)). For every pi,...,pm € [—1,1]

Theorem 4.28 implies Theorem 4.21:

Thaoh (T) = Xna kg 0,0,..,0(T).

pG () = Xo,....0(®)-
tfhe 1 (@) + (1 =) fry i —1(2) = Xha,.o hi,2t—1,0,...,0(2).

Theorem 4.29 (Marcus, Spielman, Srivastava (matrix)). Assuming that:

e r1,...,7m € R™ are independent random vectors, whose support has < 2 points
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Then

m

Edet | I — err;r

g1

is real rooted.

Theorem 4.29 implies Theorem 4.28:

Xpl""vpnz (x) is
Edet(zl — A,).

Ag, o= AgtéAﬁ

Edet(xzI — Ay) is real rooted if and only if Edet((xz + d)I — As) is real rooted. This equals
Edet(zI + (dI — Ay)).

Note
dl — As = Z(em + S(-L y)ey)(el’ + S(x’y)ey)T'

T~y

Lecture 12 Done.

Definition 4.30 (Real stable). A polynomial p(z1,...,2,) € Rlz1,...,2,] is real stable if
p(21,---,2n) £ 0 for all (z1,...,2,) € H", H={2€ C|Imz > 0}.

Notice that for a single variable, p(z) is real stable if and only if real rooted.

Example. 1 — z125.

Proposition 4.31 (Stable iff real rooted). p(z1,...,2y) is real stable if and only if for all RZ,
b € R™, the polynomial ¢ — p(at + b) is real rooted. B

Proof.

= If p not stable, then there exists 2o, ...,2, € H with p(z1,...,2,) =0, z; = b; +ia;, a;j > 0. Then
plai+b)=0,t=1.
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< Suppose Ja € R%, b € R", t € C\ R with p(at + b) = 0. Assume Imt > 0. z; + a;t +b; € H.

p(Zla'“vZn) :p(at+b) =0.

Proposition 4.32 (Stability of real stable). Assuming that:
e p(z1,...,2y,) is real stable
Then the following are also:
o P(25(1),- > 20(n))s T € Sn-
o plazi,22,...,4%), a € Rxq.
o p(22,29,23,...,2n).
o ple,29,...,2,), c€E HUR.
o z‘flp (72—11, 29, ... ,zn).
o 0,p(21,.. ., 20).
o MAP(p(21,..-,2n)). MAP (2120 + 2222 + 22124 + 2023) = 2122 + 22124.

e If p, g are real stable, then so is pq.

Proposition 4.33 (Mother of all stable polynomials). Assuming that:

e B € R4 symmetric matrix
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o Ay,..., A, € R¥4 positive semi definite

Then det(B + 2141 + -+ + 2, A,,) is real stable.

Proof. Let a € R, b € R". Assume positive definite instead of positive semi definite.

det [ B+ (ajt+bj)A; | =det > ajA; | t+ | Y bjA;+B
j=1

Jj=1 Jj=1

=:A =:C
A is positive definite, and C' is symmetric. So
= det(At + C)
= det(AZ (t] + A"2CA7)A?)
= det Adet(t] + A"2CA™?)

The roots are eigenvalues of a real symmetric matrix, hence real. O

Proof of Theorem 4.29. Say r; equals rj' with probability pj', and equals r;” with probability p;. We
will use Cauchy Binet:
det(AB) =)~ det(Agx[n) det(Bjyxc)TODO

n
p(#1,...,2,) = Edet szrjr;

j=1

=E Z det szrjr;
SC[m] JES
|S|=n

=E Z sz det err;r
SClm] \JES jes
|S|=n

n
det Eszrjro = det
j=1

n
-
E szrjrj

Jj=1
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is real stable since Erjr;r > ( is a covariance matrix.
m
_ 4T — =T
= det sz(pj (i) () )
=1

= Z H 2; Z det(p?(j)r?(j)(r;l(j))—r) + “terms with squares”
SC[m] \JES ne{£1}s
|S|=n
So the earlier thing is real stable. So
E det Z zjrjro

j=1

is real stable. So

m m

T T

E det E zirir; + E Tjeje;
Jj=1 j=1

is real stable. Take z; = —1, x; = x. Then
Edet | o — Z rjr;r
j=1
is real stable. O
s 2

Theorem 4.34 (Godsil). Assuming that:
e G is d-regular
e A <--- <\, are the roots of ug(x)
Then

> M=) Wa(G),
k=1 a

where W!(G) is the number of closed walks of length [ from a in the path tree T, (G) of G.
. J

Definition 4.35 (Path tree). Example: T,(G)
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L &
KV ab \0\(
AW
c (JL 0\bC @\D
& cld
G T, (6) b

N

Proof of 7?7 implies Theorem 4.23. WL(G) < WL(I],) < (2v/d — 1+ o;(1))".
X, SN =2, WE(G) < n(2vd =T+ oi(1))"
An <t (2Vd =1+ 0y(1)).
Take | — oo.
Proof of 72. pily(z) = 3, pe—a(x) Hence
DD A" D MG —a) = Y (n = 2k)2" (1) R (@)

a k>0 k>0

= pic ()
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Claim: 7”5 al@) _ 1 =250 WL(LG).

lffoa(x) _ ,uG,a(:v)

pa(@)  wpg-alr) = Xpq G—a—b(2)
1 1

m]'_‘l§:b~aﬁglgjgﬂ

HG—a(x)

xz<xzﬂGab )

k>0 b~a

! —a
Sl (T

k>0 bra © 120

B SN B apppu-ail BN (5 o JlUACEL

k>0 bi~aly>0 bp~alr>0

whaG
-y

1>0

Why? A tree-like walk in W!(G) that visits a exactly k times is determined by:

e A sequence by, ..., by of neighbours of a.

41
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e A sequence 7, ...,7 of walks in Té;(G—a) where 2k + 11 + -+ 1, = L.
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