Spectral Graph Theory

Lectured by Victor Souza

May 30, 2025

Contents

	1	Setting	2
	2	Graphs and some of their matrices	7
		2.1 Irregular graphs	9
	3	Expansion and Cheeger inequality	11
	4	Loewner order	17
		4.1 One-sided expanders	25
ecture 1	Index		43
	"li	near algebraic methods in combinatorics"	

Le

1 Setting

 Ω a set (finite), $f: \Omega \to \mathbb{C}$, $l^2(\Omega) := \{f: \Omega \to \mathbb{C} \mid \sum_x |f(x)|^2 < \infty \}$.

This generalises subsets: given $S \subseteq \Omega$, can consider $\mathbb{1}_S : \Omega \to \mathbb{C}$ (where $x \mapsto 1$ for $x \in S$, and $x \mapsto 0$ otherwise).

When S contains only a single element, we may use the shorthand $\mathbb{1}_x = \mathbb{1}_{\{x\}}$.

 $l^2(\Omega)$ is a \mathbb{C} -vector space, equipped with the inner product $\langle \bullet, \bullet \rangle : l^2(\Omega) \times l^2(\Omega) \to \mathbb{C}$ defined by

$$\langle f, g \rangle := \sum_{x \in \Omega} \overline{f(x)} g(x),$$

and a norm $||f||_2^2 := \langle f, f \rangle = \sum_x |f(x)|^2$.

Matrix over Ω : $M: \Omega \times \Omega \to \mathbb{C}$. $M(x,y) = M_{x,y}$ is the x,y entry. M acts on $l^2(\Omega)$: for $f \in l^2(\Omega)$, $Mf \in l^2(\Omega)$ is given by $(Mf)(x) = \sum_y M(x,y)f(y)$. $M(\alpha f + \beta g) = \alpha M f + \beta M g$ (M is a linear map).

Given M, N, can calculate

$$(MNf)(X) = \sum_{y} \sum_{z} M(x, z) N(z, y) f(y),$$

so define $(MN)(x,y) = \sum_z M(x,z) N(z,y)$, so that the formula $(MNf)(x) = \sum_y (MN)(x,y) f(y)$ holds.

Eigenthings: for $M: \Omega \times \Omega \to \mathbb{C}$, we say that $\lambda \in \mathbb{C}$ is an eigenvalue with eigenfunction $\varphi \neq 0$ if $M\varphi = \lambda \varphi$.

Definition 1.1 (Hermitian). M is Hermitian if $M = M^H$, where $M^H(x,y) = \overline{M(y,x)}$. If M is Hermitian, then $\langle Mf,g \rangle = \langle f,Mg \rangle$.

Theorem 1.2 (Spectral theorem for Hermitian matrices). Assuming that:

- Ω finite
- $M: \Omega \times \Omega \to \mathbb{C}$ Hermitian
- $|\Omega| = n$

Then there exist $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ and $\varphi_1, \ldots, \varphi_n \in l^2(\Omega)$ non-zero such that

- (1) $M\varphi_i = \lambda_i \varphi_i$
- (2) $\langle \varphi_i, \varphi_j \rangle \mathbb{1}_{i=j}$
- (3) $M = \sum_{i=1}^{n} \lambda \varphi_i \varphi_i^H$

- (4) there exists U orthogonal such that $UMU^H = \operatorname{diag}(\lambda_i)$
- (5) if M is real, then can take φ to be real $(\varphi: \Omega \to \mathbb{R})$

Lemma 1.3. Any M has an eigenpair (λ, φ) .

Proof. Want Mf = zf for some $z \in \mathbb{C}$. So want (zI - M)f = 0 to have a non-trivial solution $f \neq 0$. This happens if and only if zI - M is singular, which happens if and only if $\det(zI - M) = 0$.

 $z \mapsto \det(zI - M)$ is a degree n polynomial in \mathbb{C} (degree n since the leading term is z^n), so the fundamental theorem of algebra shows that there exists $\lambda \in \mathbb{C}$ such that $\det(\lambda I - M) = 0$.

Lemma 1.4. Assuming that:

 \bullet *M* is Hermitian

Then all eigenvalues are real

Proof.

$$\begin{split} \overline{\lambda}\langle\varphi,\varphi\rangle &= \langle\lambda\varphi,\varphi\rangle \\ &= \langle M\varphi,\varphi\rangle \\ &= \langle\varphi,M\varphi\rangle \\ &= \langle\varphi,\lambda\varphi\rangle \\ &= \lambda\langle\varphi,\varphi\rangle \end{split}$$

Since $\varphi \neq 0$, $\langle \varphi, \varphi \rangle = \|\varphi\|^2 > 0$, hence $\lambda = \overline{\lambda}$, i.e. $\lambda \in \mathbb{R}$.

Lemma 1.5. Assuming that:

- \bullet M Hermitian
- $\lambda_i \neq \lambda_j$ are eigenvalues of M with eigenvectors φ_i, φ_j

Then $\langle \varphi_i, \varphi_j \rangle = 0$.

Proof.

$$\lambda_i \langle \varphi_i, \varphi_j \rangle = \langle M \varphi_i, \varphi_j \rangle$$

$$= \langle \varphi_i, M \varphi_j \rangle$$

$$= \lambda_j \langle \varphi_i, \varphi_j \rangle$$

Since we assumed $\lambda_i \neq \lambda_j$, this gives $\langle \varphi_i, \varphi_j \rangle = 0$.

Lemma 1.6. Assuming: - M is real symmetric - λ is an eigenvalue Then: there exists $g:\Omega\to\mathbb{R}$ such that $Mg=\lambda g$.

Proof. Let $\varphi = f + ig$. Then $M\varphi = Mf + iMg = \lambda \varphi = \lambda f + i\lambda g$. Hence $Mf = M\lambda$ and $Mg = \lambda g$. So either f or g works.

Notation. For $f,g\in l^2(\Omega),\ fg^H$ denotes the matrix $(fg^H)(x,y)=f(x)\overline{g}(y)$. " $(fg^H)h=fg^Hh=f\langle g,h\rangle$ "

Proof of Spectral theorem for Hermitian matrices. Using the above lemmas, can find $\lambda_n \in \mathbb{R}$ and $\varphi_i : \Omega \to \mathbb{C}$ non-zero such that $M\varphi_n = \lambda_n \varphi_n$ and $\|\varphi_n\| = 1$.

Then let $M' = M - \lambda_n \varphi_n \varphi_n^H$. $l^2(\Omega) = \operatorname{span}(\varphi_n) \oplus \operatorname{span}(\varphi_n)^\top$. Then check that M' acts on $\operatorname{span}(\varphi_n)^\top$ and use induction.

Theorem 1.7 (Courant-Fischer-Weyl Theorem). Assuming: - $M: \Omega \times \Omega \to \mathbb{R}$ symmetric - eigenvalues $\lambda_1 \leq \ldots \leq \lambda_n$ Then:

$$\lambda_k = \min_{\substack{W \leq l^2(\Omega) \\ \dim W = k}} \max_{\substack{f \in W \\ f \neq 0}} \frac{\langle f, Mf \rangle}{\langle f, f \rangle} = F_k.$$

Definition 1.8 (Rayleigh quotient). $\frac{\langle f, Mf \rangle}{\langle f, f \rangle}$ is called the *Rayleigh quotient*.

Proof. Let $W' = \operatorname{span}(\varphi_1, \dots, \varphi_k)$. Note

$$F_k \le \max_{\substack{f \in W \\ f \ne 0}} \frac{\langle f, Mf \rangle}{\langle f, f \rangle}.$$

For $f \in W$, $f = \sum_{i=1}^{k} \alpha_i \varphi_i$, so

$$\frac{\langle f, Mf \rangle}{\langle f, f \rangle} = \frac{\sum_{i=1}^k \alpha_i^2 \lambda_i}{\sum_{i=1}^k \alpha_i^2} \le \frac{\lambda_k \sum_{i=1}^k \alpha_i^2}{\sum_{i=1}^k \alpha_i^2} = \lambda_k.$$

So $F_k \leq \lambda_k$.

Now suppose W is a subspace with dim W = k. Let $V = \operatorname{span}(\varphi_k, \dots, \varphi_n)$, and note $\div V = n - k + 1$. Note

$$\dim(V\cap W)=\dim V+\dim W-\dim(V+W)\geq k+(n-k+1)-n=1.$$

So for all such W, there exists $f \in V \cap W$, $f \neq 0$ such that $f = \sum_{i \geq k} \alpha_i \varphi_i$. Then

$$\langle f, Mf \rangle = \sum_{i > k} \alpha_i^2 \lambda_i \ge \lambda_k \sum_{i > k} \alpha_i^2 = \lambda_k \langle f, f \rangle,$$

so $F_k \geq \lambda_k$.

Lecture 2

Notation 1.9. Define $Q_M: l^2(\Omega) \to \mathbb{C}$ by $Q_M(f) = \langle f, Mf \rangle = \sum_{x,y} f(x) M(x,y) f(y)$. Define $q_m(f) = \frac{Q_M(f)}{Q_I(f)}$.

 $\lambda_1(M) = \min_{f \neq 0} q_M(f)$ and it is attained only on

Lemma 1.10. eigenfunctions of λ_1 .

Proof. Let $f = \sum_{i} \alpha_{i} \varphi_{i}$ and $Mf = \sum_{i} \alpha_{i} \lambda_{i} \varphi_{i}$. Then

$$\begin{aligned} Q_M(f) &= \langle f, Mf \rangle \\ \sum_{i,j} \alpha_i \alpha_j \lambda_i \langle \varphi_i, \varphi_j \rangle \\ &= \sum_i \alpha_i^2 \lambda_i \end{aligned}$$

and

$$q_M(f) = \frac{\sum_i \alpha_i^2 \lambda_i}{\sum_i \alpha_i^2} \ge \lambda_i.$$

Equality occurs here if and only if $\sum_{i}(\lambda_1 - \lambda_i)\alpha_i^2 = 0$. So $\alpha_i = 0$ whenever $\lambda_i > \lambda_1$.

Assuming:

Lemma 1.11. - φ_1 is an eigenfunction of λ_1 . Then: $\lambda_2(M) = \min_{\substack{f \perp \varphi_1 \\ f \neq 0}} q_M(f)$, and it is attained only on eigenfunctions of $\lambda_2(M)$.

Proof.

$$q_M(f) = \frac{\sum_i \alpha_i^2 \lambda_i}{\sum_i \alpha_i^2} \ge \frac{\alpha_1^2 \lambda_1 + \left(\sum_{i \ge 2} \alpha_i^2\right) \lambda_2}{\sum_i \alpha_i^2}.$$

So

$$\min_{\substack{f \perp \varphi_i \\ f \neq 0}} q_M(f) \ge \lambda_2.$$

Deal with the equality case similarly to before.

In general:

$$\lambda_k(M) = \min_{\substack{f \perp \varphi_1, \dots, \varphi_{k-1} \\ f \neq 0}} q_M(f).$$

(and equality case is similar to before). Also,

$$\begin{split} \lambda_n(M) &= \max_{f \neq 0} q_M(f) \\ \lambda_{n-k}(M) &= \max_{\substack{f \perp \varphi_n, \dots, \varphi_{n-k+1} \\ f \neq 0}} q_M(f) \end{split}$$

(and equality case is similar to before).

2 Graphs and some of their matrices

Graph G = (V, E): set of vertices V, |V| = n, E is a set of (unordered) pairs of vertices.

Definition 2.1 (Adjacency matrix). The *adjacency matrix* of a graph G is the matrix $A_G: V \times V \to \mathbb{R}$ defined by

$$A_G(x,y) = \begin{cases} 1 & \{x,y\} \in E(G) \\ 0 & \{x,y\} \notin E(G) \end{cases}$$

Definition 2.2 (Degree matrix). The *degree matrix* of a graph G is the matrix $D_G: V \times V \to \mathbb{R}$ defined by

$$D_G(x,y) = \begin{cases} \deg(x) & x = y \\ 0 & \text{otherwise} \end{cases}$$

Definition 2.3 (Laplacian matrix). The *Laplacian matrix* of a graph G is defined by $L_G = D - A$.

We can now calculate:

$$Q_{A}(f) = \sum_{x,y} f(x)A(x,y)f(y)$$

$$= 2\sum_{x\sim y} f(x)f(y)$$

$$Q_{D}(f) = \sum_{x,y} f(x)D(x,y)f(y)$$

$$= \sum_{x} f(x)^{2} \deg(x)$$

$$= \sum_{x} f(x)^{2} \sum_{y} A(x,y)$$

$$= \sum_{x,y} f(x)^{2}A(x,y)$$

$$= \frac{1}{2}\sum_{x,y} (f(x)^{2} + f(y)^{2})A(x,y)$$

$$= \sum_{x\sim y} (f(x)^{2} + f(y)^{2})$$

$$Q_{L}(f) = Q_{D-A}(f)$$

$$= Q_{D}(f) - Q_{A}(f)$$

$$= \sum_{x\sim y} (f(x)^{2} + f(y)^{2} - 2f(x)f(y))$$

$$= \sum_{x\sim y} (f(x) - f(y))^{2}$$

$$> 0$$

Corollary 2.4. For any graph G, L_G is a positive semi definite matrix with eigenvector 1, which has eigenvalue 1.

Proof. Since $Q_L(f) = \sum_{x \sim y} (f(x) - f(y))^2$, we see that $Q_L(f) \geq 0$, with equality when f is constant.

Proposition 2.5. $\lambda_2(L_g) > 0$ if and only if G is connected. $\lambda_k(L_G) = 0$ if and only if G has at least k connected components.

Proof.

$$\lambda_2 = \min_{\substack{f \perp 1 \\ f \neq 0}} \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\langle f, f \rangle} \ge 0$$

Equality happens if and only if $Q_L(f) = 0$, which happens if and only if f is constant on connected components. The dimension of $\{f : \text{constant on connected components}\}$ is the number of connected components of G.

TODO? \Box

Lecture 3 TODO

Lecture 4 TODO

2.1 Irregular graphs

$$\begin{split} A,\,D,\,L &= D-A,\,Q_L(f) = \textstyle\sum_{x \sim y} (f(x)-f(y))^2,\,q_L(f) = \frac{\sum_{x \sim y} (f(x)-f(y))^2}{\sum_x f(x)^2}. \\ Q_L(f) &= \langle f, Lf \rangle \\ &= \langle ,(D-A)f \rangle \\ &= \langle f,(2D-(D+A))f \rangle \\ &= \langle f,2Df \rangle - \langle f,(D+A)f \rangle \end{split}$$

When G is d-regular,

$$\tilde{L}_G = \frac{1}{d}L_G = I - \frac{1}{d}A_G,$$

 $\lambda_i(\tilde{L}_G \in [0, 2].$

$$q_{\tilde{L}}(f) = \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x d(x) f(x)^2} = 2 - \frac{\sum_{x \sim y} (f(x) + f(y))^2}{\sum_x d(x) f(x)^2}.$$

Want M such that $q_M(f)$ equals the expression above. Recall $q_M(f) = \frac{\langle f, Mf \rangle}{\langle f, f \rangle}$. But the above expression is $\frac{\langle f, Mf \rangle}{\langle f, Df \rangle}$.

Let $D^{\frac{1}{2}}(x,y) = \mathbbm{1}_{x=y} \sqrt{d(x)}$. Assume $d(x) \geq 1$ for all $x \in G$. Note

$$q_M(D^{\frac{1}{2}}f) = \frac{\langle D^{\frac{1}{2}}f, MD^{\frac{1}{2}}f\rangle}{\langle D^{\frac{1}{2}}f, D^{\frac{1}{2}}f\rangle} = \frac{\langle f, D^{\frac{1}{2}}MD^{\frac{1}{2}}f\rangle}{\langle f, Df\rangle}.$$

Want $D^{\frac{1}{2}}MD^{\frac{1}{2}} = L = D - A$. Define

$$\tilde{L}_G = D^{-\frac{1}{2}}(D-A)D^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}.$$

So

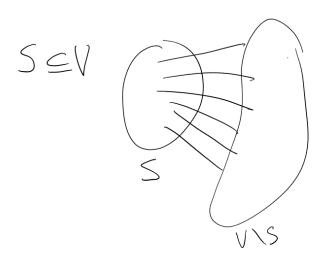
$$\tilde{L}_G = \begin{cases} 1 & \text{if } x = y \\ -\frac{1}{\sqrt{d(x)d(y)}} & \text{if } x \neq y \text{ and } x \sim y \\ 0 & \text{if } x \neq y \text{ and } x \not\sim y \end{cases}$$

$$q_{\tilde{L}_G}(D^{\frac{1}{2}}f) = \frac{\sum_{x \sim y} (f(x) - y(y))^2}{\sum_x d(x) f(x)^2}.$$

$$\lambda_k(\tilde{L}_G) = \min_{\substack{\dim W = K \\ f \neq 0}} \max_{\substack{f \in W \\ f \neq 0}} q_{\tilde{L}_G}(D^{\frac{1}{2}}f).$$

3 Expansion and Cheeger inequality

Assume G is d-regular. Write G = (V, E).



Definition 3.1 (Expansion). Given a d-regular graph G and $S \subseteq V$, the expansion of S is

$$\Phi(S) := \frac{e(S, V \setminus S)}{d|S|}.$$

Note that $0 \le \Phi \le 1$, for example because

$$\Phi(S) = \mathbb{P}_{\substack{x \sim U(S) \\ y \sim N(x)}}(y \notin S).$$

Definition 3.2 (Edge expansion). The *(edge) expansion* of a cut $(S, V \setminus S)$ is defined as

$$\Phi(S,V\setminus S):=\max\{\Phi(S),\Phi(V\setminus S)\}=\frac{e(S,V\setminus S)}{d\min\{|S|,|V\setminus |\}}.$$

Definition 3.3 (Edge expansion of a graph). The edge expansion of a graph is

$$\Phi(G) := \min_{\substack{S \subseteq V \\ \emptyset \neq S \neq V}} \Phi(S, V \setminus S) = \min_{\substack{S \subseteq V \\ 0 < |S| < |V|/2}} \Phi(S).$$

Theorem 3.4 (Cheeger's inequality). Assuming that:

• G be d-regular

Then

$$\frac{\lambda_2(\tilde{L}_G)}{2} \le \Phi(G) \le \sqrt{2\lambda_2(\tilde{L}_G)}.$$

Consider $\mathbb{1}_S: V \to \mathbb{R}$, where $\mathbb{1}_S(x) = 1$ if $x \in S$ and $\mathbb{1}_S(x) = 0$ otherwise. Then

$$Q_L(\mathbb{1}_S) = \sum_{x \sim y} (\mathbb{1}_S(x) - \mathbb{1}_S(y))^2 = e(S, V \setminus S)$$
$$q_{\tilde{L}}(\mathbb{1}_S) = \frac{e(S, V \setminus S)}{d|S|} = \Phi(S)$$

Recall

$$\lambda_2(\tilde{L}_G) = \min_{\substack{\dim W = 2 \\ f \neq 0}} \max_{\substack{f \in W \\ f \neq 0}} q_{\tilde{L}_G}(f).$$

We pick $W = \text{span}\{\mathbb{1}_S, \mathbb{1}_{V \setminus S}\}$. Note

$$\begin{split} \lambda_2(\tilde{L}_G) &\leq \max_{\substack{\alpha,\beta\\ (\alpha,\beta) \neq (0,0)}} q_{\tilde{L}_G}(\alpha \mathbb{1}_S + \beta \mathbb{1}_{V \setminus S}) \\ &\leq \max_{\alpha,\beta} 2 \max\{q_{\tilde{L}(G)}(\alpha \mathbb{1}_S), q_{\tilde{L}_G}(\beta \mathbb{1}_{V \setminus S})\} \end{split}$$

Lemma 3.5. Assuming that:

- ullet M is symmetric positive semi-definite
- $\langle f, g \rangle = 0$

Then

$$q_M(f+g) \le 2 \max\{q_M(f), q_M(g)\}.$$

Proof. Let $\lambda_i, \, \varphi_i$ such that $f = \sum_i \lambda_i \varphi_i$ and $g = \sum_i \beta_i \varphi_i$. Then

$$q_M(f+g) = \frac{\sum_i \lambda_i (\alpha_i + \beta_i)^2}{\|f+g\|^2} \leq \frac{\sum_i \lambda_i (2\alpha_i^2 + 2\beta_i^2)}{\|f\|^2 + \|g\|^2}.$$

Then

$$q_{M}(f+g) \leq 2\left(\frac{\sum_{i} \lambda_{i} \alpha_{i}^{2} + \sum_{i} \lambda_{i} \beta_{i}^{2}}{\|f\|^{2} + \|g\|^{2}}\right)$$

$$= 2\left(\frac{q_{M}(f)\|f\|^{2} + q_{M}(g)\|g\|^{2}}{\|f\|^{2} + \|g\|^{2}}\right)$$

$$\leq 2\max\{q_{M}(f), q_{M}(g)\}$$

Proof of left inequality in Cheeger's inequality. $\lambda_2 \leq 2 \max\{\Phi(S), \Phi(V \setminus S)\} = 2\Phi(S, V \setminus S)$. Then minimise over all S, to get $\lambda_2 \leq 2\Phi(G)$.

Lecture 5

Recall that

$$\Phi(S) = q_{\tilde{L}_G}(\mathbb{1}_S)$$

and

$$\Phi(G) = \min_{\substack{S \subseteq V \\ 1 \leq |S| \leq |V|/2}} q_{\tilde{L}_G}(\mathbb{1}_S).$$

Fiedler's Algorithm

Input: $G, \varphi : V \to \mathbb{R}$.

- Sort vertices x_1, \ldots, x_n such that $\varphi(x_1) \leq \cdots \leq \varphi(x_n)$.
- Find cut K that minimises $\Phi(\{x_2,\ldots,x_k\},\{x_{k+1},\ldots,x_n\})$.

Output: The cut.

Running time: $O(|V| \log |V| + |E|)$.

Lemma 3.6. Assuming that:

- $\psi: V \to \mathbb{R}$
- $\langle \psi, 1 \rangle = 0$
- let $(S, V \setminus S) = \text{Fiedler}(G, \psi)$

Then

$$\Phi(S, V \setminus S) \le \sqrt{2q_{\tilde{L}_G}(\psi)}.$$

If $\psi: V \to \mathbb{R}$, call a cut $(\{x: \psi(x) \ge \tau)\}, \{x: \psi(x) < \tau\})$ a threshold cut for ψ .

Lemma 3.7. Assuming that:

- $\bullet \quad \varphi:V\to \mathbb{R}$
- $\langle \varphi, 1 \rangle = 0$

Then there is $\psi: V \to \mathbb{R}_{\geq 0}$ such that $q_{\tilde{L}_G}(\psi) \leq q_{\tilde{L}_G}(\psi)$, $|\operatorname{supp} \psi| = |\{x: \psi(x) > 0\}| \leq \frac{|V|}{Q}$ and any threshold cut for ψ is a threshold cut for φ .

Lemma 3.8. Assuming that:

•
$$\psi: V \to \mathbb{R}_{>0}$$

Then there is $0 < t \le ||\psi||_{\infty}$ such that

$$\Phi(\{x: \psi(x) \ge t\}) \le \sqrt{2q_{\tilde{L}_G}(\psi)}.$$

Proof of Lemma 3.7. If $\langle \varphi, 1 \rangle = 0$ then

$$\begin{split} q_{\tilde{L}_G}(\varphi + \alpha 1) &= \frac{Q_{\tilde{L}_G}(\varphi + \alpha 1)}{\|\varphi + \alpha 1\|^2} \\ &= \frac{Q_{\tilde{L}_G}(\varphi)}{\|\varphi\|^2 + \alpha^2} \\ &\leq \frac{Q_{\tilde{L}_G}(\varphi)}{\|\varphi\|^2} \\ &= q_{\tilde{L}_G}(\varphi) \end{split}$$

Let $m \in \mathbb{R}$ be the median of φ .

$$|\{x \in V : \varphi(x) > m\}| \le \frac{|V|}{2}$$
$$|\{x \in V : \varphi(x) < m\}| \le \frac{|V|}{2}$$

 $\overline{\varphi} = \varphi - m1, \, q_{\tilde{L}_G}(\overline{\varphi}) \leq q_{\tilde{L}_G}(\varphi). \text{ Let } \overline{\varphi} = \overline{\varphi}^+ - \overline{\varphi}^-, \text{ where } \overline{\varphi}^+, \overline{\varphi}^- : V \to \mathbb{R}_{\geq 0}. \text{ So}$

$$\overline{\varphi}(x) = \begin{cases} \overline{\varphi}^+(x) & \varphi(x) > m \\ -\overline{\varphi}^-(x) & \varphi(x) < m \\ 0 & \varphi(x) = m \end{cases}$$

Note $\langle \overline{\varphi}^-, \overline{\varphi}^+ \rangle = 0$.

Claim: either $\overline{\varphi}^+$ or $\overline{\varphi}^-$ suffices.

$$\begin{split} q_{\tilde{L}_G}(\varphi) &\geq q_{\tilde{L}_G}(\overline{\varphi}) \\ &= q_{\tilde{L}_G}(\overline{\varphi}^+ - \overline{\varphi}^-) \\ &= \frac{\sum_{x \sim y} (\overline{\varphi}^+(x) - \overline{\varphi}^-(x) - \overline{\varphi}^+(y) + \overline{\varphi}^-(y))^2}{\|\overline{\varphi}^+ - \overline{\varphi}^-\|^2} \\ &= \frac{\sum_{x \sim y} ((\overline{\varphi}^+(x) - \overline{\varphi}^+(y)) - (\overline{\varphi}^-(x) - \overline{\varphi}^-(x))^2}{\|\overline{\varphi}^+\|^2 + \|\overline{\varphi}^-\|^2} \\ &\geq \frac{\sum_{x \sim y} (\overline{\varphi}^+(x) - \overline{\varphi}^+(y))^2 + (\overline{\varphi}^-(x) - \overline{\varphi}^-(y))^2}{\|\overline{\varphi}^+\|^2 + \|\overline{\varphi}^-\|^2} \\ &= \frac{q_{\tilde{L}_G}(\overline{\varphi}^+) \|\overline{\varphi}\|^2 + q_{\tilde{L}_G}(\overline{\varphi}^-) \|\overline{\varphi}^-\|^2}{\|\overline{\varphi}\|^2 + \|\overline{\varphi}^-\|^2} \end{split}$$

Proof of Lemma 3.8. Assume $\|\psi\|_{\infty} = 1$. We find $0 < t \le 1$. Choose t at random, such that $t^2 \sim \text{Unif}([0,1])$. Let

$$S_t = \{ x \in V : \psi(x) > t \}.$$

Then

$$\mathbb{E}|S_t| = \sum_x \mathbb{P}(x \in S_t) = \sum_x \mathbb{P}(\psi(x)^2 > t^2) = \sum_x \psi(x)^2.$$

Have

$$\Phi(S_t) = \frac{e(S_t, V \setminus S_t)}{d|S_t|}.$$

Also, can calculate:

$$\mathbb{E}d|S_t| = d\sum_x \psi(x)^2$$

$$\mathbb{E}e(S_t, V \setminus S_t) = \sum_{x \sim y} \mathbb{P}(xy \text{ is cut by } (S_t, V \setminus S_t))$$

$$= \sum_{x \sim y} |\psi(x)^2 - \psi(y)^2|$$

$$= \sum_{x \sim y} |\psi(x) - \psi(y)|(\psi(x) + \psi(y))$$

$$\leq \sqrt{\sum_{x \sim y} (\psi(x) - \psi(y))^2} \cdot \sqrt{\sum_{x \sim y} (\psi(x) + \psi(y))^2}$$

Then

$$\frac{\mathbb{E}e(S_t, V \setminus S_t)}{\mathbb{E}d|S_t|} \le \sqrt{q_{\tilde{L}_G}(\psi)} \cdot \sqrt{\frac{\sum_{x \sim y} (\psi(x) + \psi(y))^2}{d\sum_x \psi(x)^2}}$$
$$\le \sqrt{2q_{\tilde{L}_G}(\psi)}$$

Now use the following fact to finish:

Fact: If X and Y are random variables with $\mathbb{P}(Y > 0) = 1$, then $\mathbb{P}\left(\frac{X}{Y} \leq \frac{\mathbb{E}X}{\mathbb{E}Y}\right)$.

(Proof: let $R = \frac{\mathbb{E}X}{\mathbb{E}Y}$. Then $\mathbb{E}(X - RY) = 0$, so $\mathbb{P}(X - RY \le 0)$) > 0, hence $\mathbb{P}(\frac{X}{Y} \le R) > 0$).

Lecture 6

Example. C_N . This has $\lambda_2(\tilde{L}_{C_N} = \theta\left(\frac{1}{N^2}\right)$. For $S \subseteq C_N$ with $|1 \le S| \le \frac{1}{2}|C_N|$, we have $e(S, V \setminus S) \ge 2$. So

$$\Phi(S) = \min_{\substack{S \subseteq V \\ 0 < |S| < |V|/2}} \frac{e(S, V \setminus S)}{d|S|} = \min_{1 \le s \le N/2} \frac{2}{2s} \simeq \frac{2}{N}.$$

Compare with Cheeger's inequality:

$$\frac{1}{N^2} < \frac{1}{N} \le \sqrt{\frac{1}{N^2}}.$$

Example. $G = Q_n$, $N = 2^n$. $G = \text{Cay}((\mathbb{Z}/2\mathbb{Z})^n, \{e_1, \dots, e_n\})$. We index eigenfunctions by sets $T \subseteq [n]$. $\chi_T(x) = (-1)^{\sum_{i \in T} x_i}$, $\lambda_T = \frac{2|T|}{n}$.

$$\lambda_2^{(\tilde{L}_{Q_n})} = \frac{2}{n} = \frac{2}{\log N}.$$

 $\lambda_2^{(\tilde{L}_{Q_n})} = \frac{2}{n} = \frac{2}{\log N}.$ $\Phi(Q_n) \ge \frac{2}{2n} = \frac{1}{n}. \text{ If } S \subseteq Q_n, |S| \le N/2, \text{ then}$

$$\frac{e(S,V\setminus S)}{n|S|}\geq \frac{1}{n} \quad \Longrightarrow \quad e(S,V\setminus S)\geq |S|.$$

Harper gives a better bound:

$$e(S, V \setminus S) \ge |S| \log_2 \left(\frac{2^n}{|S|}\right).$$

By considering S being half of the cube, we get

$$\Phi(Q_n) = \frac{1}{n} = \frac{\lambda_2(\tilde{K}_{Q_n})}{2}.$$

Fiedler's algorithm: Let $f = \sum_{i=1}^{n} \chi_{\{i\}}$, $\tilde{L}_{Q_n} f = \frac{2}{n} f$. $f(x) = \sum_{i=1}^{n} (-1)^{x_i} = n - 2|x|$.

$$\Phi_k = \frac{\binom{n}{k}(n-k)}{n\sum_{j=0}^k \binom{n}{j}}.$$

 $k = \frac{n}{2}$

$$\frac{\binom{n}{n/2}\frac{n}{2}}{n2^{n-1}} = \frac{\binom{n}{n/2}}{2^n} \approx \frac{1}{\sqrt{n}}.$$

4 Loewner order

Definition 4.1 (Loewner order). For A, B matrices, write $A \leq B$ if B - A is positive semidefinite. In particular, $A \geq 0$ if and only if A is positive semidefinite.

$$q_A(f) = \frac{\langle f, Af \rangle}{\langle f, f \rangle} = 0.$$

 $A \preceq B$ if and only if $\forall f \neq 0$,

$$\frac{\langle f, Af \rangle}{\langle f, f \rangle} \le \frac{\langle f, Bf \rangle}{\langle f, f \rangle}.$$

$$\langle f, Af \rangle \le \langle f, Bf \rangle.$$

This is indeed an order: $A \leq B \leq C$ implies $A \leq C$

$$\langle f, Af \rangle \le \langle f, Bf \rangle \le \langle f, Cf \rangle.$$

If $A \leq B$, then $\lambda_k(A) \leq \lambda_k(B)$.

$$\lambda_k(A) = \min_{\dim W = k} \max_{\substack{f \in W \\ f \neq 0}} \frac{\langle f, Af \rangle}{\langle f, f \rangle}.$$

 $A \preccurlyeq B$ if and only if $A + C \preccurlyeq B + C$.

If G is a graph, then $L_G \leq 0$.

Definition 4.2 (eps-approximation). G is an ε -approximation of H if

$$(1-\varepsilon)L_H \leq L_G \leq (1+\varepsilon)L_H$$
.

Lemma 4.3. Given the definition $||M|| = \max_{f \neq 0} \frac{||Mf||}{||f||}$ (for M symmetric), we have $||M|| = \max\{|\lambda_k(M)|\}$.

Proof. $f = \sum_{i} \alpha_{i} \varphi_{i}, M \varphi_{i} = \lambda_{i} \varphi_{i}, ||f||^{2} = \sum_{i} \alpha_{i}^{2},$

$$||Mf||^2 = \left\| \sum_i \alpha_i \lambda_i \varphi_i \right\|^2 = \sum_i \alpha_i^2 \lambda_i^2.$$

$$\frac{\|Mf\|}{\|f\|} = \sqrt{\frac{\sum_{i} \alpha_i^2 \lambda_i^2}{\sum_{i} \alpha_i^2}} \le \max_{k} |\lambda_k|.$$

Lemma 4.4. Assuming: - G is an ε -approximation of H Then: $||L_G - L_H|| \leq \varepsilon$.

Proof. $-\varepsilon \tilde{L}_H \preccurlyeq \tilde{L}_G - \tilde{L}_H \preccurlyeq \varepsilon \tilde{L}_H$. $\lambda_k(\tilde{L}_G - \tilde{L}_H) \leq \lambda_k(\tilde{L}_H) \leq 2\varepsilon$.

Definition ((d,eps)-expander). G = (V, E), |V| = n is a (d, ε) -expander if G is an ε -approximation of $\frac{d}{n}K_n$.

Equivalent:

$$(1-\varepsilon)\frac{d}{n}L_{K_n} \preceq L_G \preceq (1+\varepsilon)\frac{d}{n}L_{K_n}.$$

 $L_{K_n}=(n-1)I-A_{K_n}=nI-J,$ where J is the all ones matrix (J(x,y)=1). If $f\perp q,$ then $Jf=\langle f,1\rangle f=0.$ In this case, $L_{K_n}f=nIf-Jf=nf.$

So $\lambda_k(L_{K_n}) = n$ for $k \geq 0$.

$$(1 - \varepsilon) \frac{d}{n} (nI - J) \leq dI - A_G \leq (1 + \varepsilon) \frac{d}{n} (nI - J)$$
$$-\varepsilon \frac{2}{n} (nI - J) \leq dI - A_G - \frac{d}{n} (nI - J) \leq \varepsilon \frac{d}{n} (nI - J)$$
$$-\varepsilon \left(dI - \frac{d}{n} J \right) \leq \frac{d}{n} J - A_G \leq \varepsilon \left(dI - \frac{d}{n} J \right)$$

For $f \perp 1$, $-\varepsilon d\langle f, f \rangle \leq -\langle f, Af \rangle \leq \varepsilon d\langle f, f \rangle$.

So G is a (d, ε) -expander if and only if

$$|\lambda_k(A_G)| \le \varepsilon d$$

for all $1 \le k \le n-1$.

Lemma 4.5 (Expander Mixing Lemma). Assuming that:

- G is d-regular
- G is a (d, ε) -expander

Then $\forall S, T \subseteq V$,

$$\left|e(S,T) - \frac{d}{n}|S||T|\right| \leq \frac{\varepsilon d}{n} \sqrt{|S||T||S^c||T^c|}.$$

Lecture 7

Proposition 4.6. Assuming that:

- G a d-regular graph on n vertices
- $\lambda, \varepsilon > 0, \varepsilon d = \lambda$

Then the following are equivalent:

- (i) G is a (n, d, λ) -graph
- (ii) $\lambda_k(A_G) \ni [-\lambda, \lambda]$, for $1 \le k \le n-1$
- (iii) $\lambda_k(L_G) \in [d \lambda, d + \lambda]$ for $2 \le k \le n$
- (iv) $\lambda_k(\tilde{L}_G) \in \left[1 \frac{\lambda}{d}, 1 + \frac{\lambda}{d}\right] = \left[1 \varepsilon, 1 + \varepsilon\right]$ for $1 \le k \le n$
- (v) $(1-\varepsilon)\frac{d}{n}L_{K_n} \leq L_G \leq (1+\varepsilon)\frac{d}{n}L_{K_n}$
- (vi) G is (d, ε) -expander (also $(d, \frac{\lambda}{d})$ -expander)
- (vii) $||L_G \frac{d}{n}L_{K_n}|| \le \varepsilon d = \lambda$
- (viii) $||A_G \frac{d}{n}J|| \le \varepsilon d = \lambda$

Lemma 4.7 (Expander Mixing Lemma). Assuming that:

- G = (V, E) an (n, d, λ) -graph
- $S,T\subseteq V$ (and define $e(S,T)=\sum_{x\in S}\sum_{y\in T}\mathbbm{1}_{xy\in E}$)

Then

$$\begin{split} \left| e(S,T) - \frac{d}{n} |S| |T| \right| &\leq \frac{\lambda}{n} \sqrt{|S| |S^c| |T| |T^c|} \\ &\leq \lambda \sqrt{|S| |T|} \end{split}$$

Proof. $\langle \mathbb{1}_S, L_G \mathbb{1}_T \rangle = \langle \mathbb{1}_S, (dI - A_G) \mathbb{1}_T \rangle, \langle \mathbb{1}_S, dI \mathbb{1}_T \rangle = d|S \cap T|.$

$$\langle \mathbb{1}_S, A_G \mathbb{1}_T \rangle = \sum_x \sum_y \mathbb{1}_S(x) A_G(x, y) \mathbb{1}_T(y)$$
$$= \sum_x \sum_y \mathbb{1}_{xy \in E}$$
$$= e(S, T)$$

 $\frac{d}{n}L_{K_n} = dI - \frac{d}{n}J.$

$$\langle \mathbb{1}_S, \frac{d}{n}J\mathbb{1}_T \rangle = \frac{d}{n}\langle \mathbb{1}_S, J\mathbb{1}_T \rangle = \frac{d}{n}\sum_x \sum_y J(x,y) = \frac{d}{n}|S||T|.$$

$$\left| e(S,T) - \frac{d}{n} |S||T| \right| = \left| \left\langle \mathbb{1}_S, \left(\frac{d}{n} L_{K_n} - LG \right) \mathbb{1}_T \right\rangle \right|$$

$$\leq \|\mathbb{1}_S\| \left\| \left(\frac{d}{n} L_{K_n} - L_G \right) \mathbb{1}_T \right\|$$

$$\leq \|\mathbb{1}_S\| \left\| \left(\frac{d}{n} L_{K_n} - L_G \right) \right\| \|\mathbb{1}_T\|$$

$$\leq \lambda \|\mathbb{1}_S\| \|\mathbb{1}_T\|$$

$$= \lambda \sqrt{|S||T|}$$

To get the better bound, we should consider functions which are perpendicular to 1: balanced function $f_S = \mathbb{1}_S - \frac{|S|}{n} 1$.

 $L_G f_S = L_G(\mathbb{1}_S - \alpha) = L \mathbb{1}_S.$

$$\left| e(S,T) - \frac{d}{n} |S| |T| \right| = \left| \left\langle f_S, \left(\frac{d}{n} L_{K_n} - L_G \right) f_T \right\rangle \right|$$

$$\leq \lambda \|f_S\| \|f_T\|$$

$$||f_S||^2 = |S| \left(1 - \frac{|S|}{n}\right)^2 + (n - |S|) \left(-\frac{|S|}{n}\right)^2$$

$$= |S| \left(1 - \frac{2|S|}{n} + \frac{|S|^2}{n^2}\right) + (n - |S|) \frac{|S|^2}{n^2}$$

$$= |S| - \frac{2|S|^2}{n} + \frac{|S|^3}{n^2} + \frac{|S|^2}{n} - \frac{|S|^3}{n^2}$$

$$= |S| - \frac{|S|^2}{n}$$

$$= \frac{n|S| - |S|^2}{n}$$

$$= \frac{n|S| |S|^2}{n}$$

$$= \frac{|S||S^c|}{n}$$

So

$$\left| e(S,T) - \frac{d}{n}|S||T| \right| \le \sqrt{|S||S^c||T||T^c|}.$$

If G is an $(n,d,\lambda)\text{-graph}$ and $I\subseteq V$ an independent set, then

$$0 = e(I, I) \ge \frac{d}{n}|I|^2 - \frac{\lambda}{n}|I||I^c|.$$

 $\lambda |I||I^c| \ge d|I|^3$.

$$|I| \le \frac{\lambda}{d}|I^c| = \frac{\lambda}{d}(n - |I|).$$
$$\left(1 + \frac{\lambda}{d}\right)|I| \le \frac{\lambda}{d}n$$

$$|I| \le \frac{\lambda}{d\left(1 + \frac{\lambda}{d}\right)} n = \frac{\lambda}{d + \lambda} n.$$

Hoffman bound: $\alpha(G) \leq \frac{\lambda}{d+\lambda}n$.

Fix d. How small can λ be such that there is an infinite family G_n of (n, d, λ) -graphs?

Note A_G^2 has d in each entry of the diagonal, so

$$\operatorname{Tr} A_G^2 = dn = \sum_i \lambda_i(A_G^2) = \sum_i (\lambda_i(A_G))^2.$$

So $dn \leq d^2 + (n-1)\lambda^2$.

So $(n-1)\lambda^2 \ge dn - d^2 = d(n-d)$, so

$$\lambda^2 \ge \frac{d(n-d)}{n-1} = d\left(\frac{n-1-(d-1)}{n-1}\right) = d\left(1 - \frac{d-1}{n-1}\right).$$

 $\lambda \ge \sqrt{d}(1 - o(1))$ as $n \to \infty$.

Alon-Boppana Theorem: $\lambda \geq 2\sqrt{d-1} - o(1)$.

Claim: There exist families of (n, d, λ) -graphs with $\lambda = 2\sqrt{d-1}$. They are called Ramanujan graphs. We will probably not prove existence of these.

Call ε -Ramanujan if $\lambda \geq 2\sqrt{d-1} + \varepsilon$.

Theorem 4.8 (Friedman). Assuming: $-\varepsilon > 0, n \to \infty$ Then:

 $\mathbb{P}(\text{random }d\text{-regular graph on }n\text{ vertices is }\varepsilon\text{-Ramanujan})\to 1.$

Maxcut in (n, d, λ) -graph:

$$\begin{split} e(S,S^c) &\leq \frac{d}{n}|S||S^c| + \frac{\lambda}{n}|S||S^c| \\ &\leq \left(\frac{d}{n} + \frac{\lambda}{n}\right)\frac{n^2}{4} \\ &= \frac{dn}{4} + \frac{\lambda n}{4} \\ &\leq \frac{e(G)}{2} + \frac{\lambda n}{4} \end{split}$$

Diameter, vertex expansion. $S \subseteq V, \, \partial S = \{x \in S^c : x \sim S\}.$

$$\frac{|\partial S|}{|S|} \ge \frac{e(S, S^c)}{d|S|} = \Phi(S) \ge \frac{\lambda_2(\tilde{L}_G)}{2} \ge \frac{\left(1 - \frac{\lambda}{d}\right)}{2}$$

$$|\partial S| \ge \left(\frac{1-\lambda/d}{2}\right)|S|.$$

Lecture 8 Exercise: Diameter $O(\log n)$.

Vertex expansion

 (n,d,λ) -graph G=(V,E). Have for all $S,T\subseteq V$,

$$\left|e(S,T) - \frac{d}{n}|S||T|\right| \leq \frac{\lambda}{n} \sqrt{|S||S^c||T||T^c|}.$$

 $\Phi_v(S) = \frac{|\partial S|}{|S|}.$

$$|\partial S| \ge \frac{e(S, S^c)}{d}$$

$$\Phi_v(S) \ge \frac{e(S, S^c)}{d|S|}$$

$$= \Phi_e(S)$$

If $S \subseteq V$, $|S| \le n/2$, then

$$\begin{split} \Phi_V(S) &\geq \Phi_e(G) \\ &\geq \frac{\lambda_2(\tilde{L}_G)}{2} \\ \Phi_v(S) &\geq \frac{\left(1 - \frac{\lambda}{d}\right)}{2} \\ |S \cup \partial S| &\geq \left(1 + \frac{1}{2} - \frac{\lambda}{2d}\right) \end{split}$$

 $n\to\infty,\,d,\,\lambda$ fixed. $\lambda\le d-\delta,\,\delta>0.$ $|S\cup\partial S|\ge (1+\kappa)|S|$ for some $\kappa>0.$ Hence

$$|B(x,r)| \ge (1+\kappa)^r$$

if $|B(x, r-1)| \le n/2$.

 $\operatorname{diam} G = O_{\frac{\lambda}{d}}(\log n)$ (by considering ball around start and end).

Why aren't Cayley graphs of abelian groups expanders?

Let Γ be an abelian group and $S \subseteq \Gamma$ a set of generators of size d. Let $|\Gamma| = n \to \infty$. Let $G = \operatorname{Cay}(\Gamma, S)$. Then

$$|B(x,r)| \le (2r+1)^d.$$

This is not exponential in r, so the Cayley graph can't be an expander.

Theorem 4.9 (Alon-Boppana). Assuming that:

• G = (V, E) an (n, d, λ) -graph

Then as $n \to \infty$

$$\lambda \ge 2\sqrt{d-1} - O(1).$$

Proof 1. Pick edge st, pick $r \in \mathbb{Z}_{\geq 0}$.

 $\varphi: V \to \mathbb{R},$

$$\varphi(x) = \begin{cases} (d-1)^{-i/2} & \text{if } x \in V_i, i \leq r \\ 0 & \text{if } x \in V_i, i > r \end{cases}$$

$$q_L(\varphi) = \frac{\langle \varphi, L\varphi \rangle}{\langle \varphi, \varphi \rangle} \qquad \langle \varphi, \varphi \rangle = \sum_{i=0}^r \frac{|V_i|}{(d-1)^i}.$$

$$\begin{split} \langle \varphi, L\varphi \rangle &= \sum_{x \sim y} (\varphi(x) - \varphi(y))^2 \\ &= \sum_{i=0}^{r-1} e(V_i, V_{i+1}) \left(\frac{1}{(d-1)^{i/2}} - \frac{1}{(d-1)^{(i+1)/2}} \right)^2 + \frac{e(V_r, V_{r+1})}{(d-1)^r} \\ &= \sum_{i=0}^{r-1} \frac{e(V_i, V_{i+1})}{(d-1)^i} \left(1 - \frac{1}{\sqrt{d-1}} \right)^2 + \frac{e(V_r, V_{r+1})}{(d-1)^r} \end{split}$$

$$e(V_i, V_{i+1}) \le (d-1)|V_i|.$$

$$\langle \varphi, L\varphi \rangle \leq \sum_{i=0}^{r-1} \frac{|V_i|}{(d-1)^i} (\sqrt{d-1}-1)^2 + \frac{|V_r|}{(d-1)^r} (d-1)$$

$$(\sqrt{d-1}-1)^2 = (d-1) - 2\sqrt{d-1} + 1 = d - 2\sqrt{d-1}$$

$$\langle \varphi, L\varphi \rangle \leq (d-2\sqrt{d-1}) \sum_{i=0}^{r-1} \frac{|V_i|}{(d-1)^i} + (d-1) \frac{|V_r|}{(d-1)^r}$$

$$|V_r| \leq (d-1)|V_{r-1}| \leq \dots \leq (d-1)^{r-i}|V_i|$$

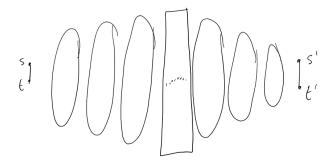
$$\implies \frac{|V_r|}{(d-1)^r} \leq \frac{1}{r} \sum_{i=0}^r \frac{|V_i|}{(d-1)^i}$$

$$\langle \varphi, L\varphi \rangle \leq (d-2\sqrt{d-1}) \sum_{i=0}^r \frac{|V_i|}{(d-1)^i} + (2\sqrt{d-1}) \frac{|V_r|}{(d-1)^r}$$

$$\leq \left(d-2\sqrt{d-1} + \frac{2\sqrt{d-1}-1}{r+1}\right) \langle \varphi, \varphi \rangle$$

$$\implies \lambda_2(L) = \min_{\dim W = 2} \max_{\substack{f \in W \\ f \neq 0}} \frac{\langle f, Lf \rangle}{\langle f, f \rangle}$$

Suppose G has 2 deges at distance > 2r + 2.



$$f, f'$$
 as above. $\langle f, f' \rangle = 0$.

$$Q_L(\alpha f + \beta f') = Q_L(\alpha f) + Q_L(\beta f').$$

Let $W = \operatorname{span}\{f, f'\}.$

$$\begin{split} \lambda_2(L) & \leq \max_{(\alpha,\beta) \neq (0,0)} \frac{Q_L(\alpha f + \beta f')}{\|\alpha f + \beta f'\|} \\ & \leq \frac{\alpha^2 Q_L(f) + \beta^2 Q_L(f')}{\alpha^2 \|f\| + \beta^2 \|f'\|} \\ & \leq d - 2\sqrt{d - 1} + \frac{2\sqrt{d - 1} - 1}{r + 1} \end{split}$$

Corollary 4.10. For all d, there are finitely many (n, d, λ) -graphs with $\lambda < 2\sqrt{d-1}$.

 $r = c \log n$.

$$\lambda_{n-1}(A_G) \ge 2\sqrt{d-1} - O_d\left(\frac{1}{\log n}\right).$$

For Alon-Boppana:

Proof 2. Tr $A^{2k} = \sum_{x} A^{2k}(x, x)$. Note that

 $\#\{\text{closed walks of length } 2k \text{ in } G \text{ starting from } x\}.$

is at least

$$\#\{\text{closed walks of length } 2k \text{ in } \prod_{d} \text{ starting from } 0\}$$

 $(\prod_d$ is an infinite d-regular tree). The latter is at least

$$(d-1)^k \frac{1}{k+1} {2k \choose k} \approx (2\sqrt{d-1})^{2k+o(1)} 2^{2k}.$$

$$\leq \sum_{i=1}^n \lambda_i^{2k} \leq d^{2k} + (n-1)\lambda^{2k}.$$

Exercise: finish details.

Lecture 9 $\min\{|\lambda_1(A)|\lambda_{n-1}(A)\} \ge \cdots$

4.1 One-sided expanders

Goal is to find: G_n graphs with n vertices, d-regular such that $\lambda_{n-1}(A_G) \leq \lambda < d$.

Reminder: (Friedman) If $G \sim G_{n,d}$ uniform random d-regular graph then

$$\mathbb{P}(G_n \text{ is } (n, d, 2\sqrt{d-1} + \varepsilon)\text{-graph}) \to 1.$$

$$\Phi(G_n) \ge \frac{\lambda_2(\tilde{L}_G)}{2} = \frac{\lambda_2(L_G)}{2d} = \frac{(d - \lambda_{n-1}(A_G))}{2d} \ge \frac{1}{2} - \frac{\varepsilon}{2} > 0.$$

Theorem 4.11. Assuming that:

• d = 2l large enough

Then there is $\varepsilon = \varepsilon_d > 0$ such that there are d-regular graphs (or multi-graphs) G_n on n vertices with $\Phi(G_n) \ge \varepsilon$ for all sufficiently large n.

Graphs G_n are as follows:

- $V(G_n) = [n], d = 2l.$
- Take $\pi_1, \dots, \pi_l : [n] \to [n]$ uniform independent permutations.
- Set

$$E(G_n) = \{ \{ x, \pi_i(x) \} : x \in [n], i \in [l] \}.$$

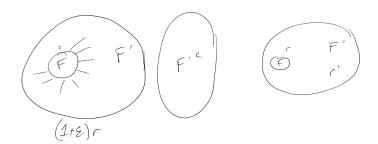
Lemma 4.12. There is $c = c_d > 0$ such that

 $\mathbb{P}(G_n \text{ is } d\text{-regular, i.e. } G_n \text{ is simple}) \geq c - o(1).$

Lemma 4.13. If G_n is d-regular, then there exists $\varepsilon = \varepsilon_d > 0$ such that

$$\mathbb{P}(\Phi(G_n) < \varepsilon) \to 0.$$

Proof. If $\Phi(G_n) < \varepsilon$ then there exists $F \subseteq [n]$, $r = |F| \le \frac{n}{2}$, there exists F', $F \subseteq F'$ and e(F, F') = d|F| and |F'| = r + r', $r' = \lfloor \varepsilon r \rfloor$.



$$\mathbb{P}(\Phi(G_n) < \varepsilon) < \sum_{\substack{1 \le r \le \frac{n}{2} \\ |F| = r \\ |F'| = r+r'}} \mathbb{P}(\pi_i(F) \subseteq F' \text{ for all } i \in [l]).$$

$$\mathbb{P}(\pi_1(F) \subseteq F') = \frac{\binom{r+r'}{r}}{\binom{n}{r}}.$$

$$\mathbb{P} \le \sum_{1 \le r \le \frac{n}{2}} \frac{n!}{r!r'!(n-r-r')!} \left(\frac{\binom{r+r'}{r}}{\binom{n}{r}}\right)^{l}.$$

Fact 1: $\frac{\binom{a}{k}}{\binom{b}{k}} \le \left(\frac{a}{b}\right)^k$ if $a \le b$.

Proof: It is equivalent to

$$ba \cdot b(a-1) \cdots b(a-k+1) \le ab \cdot a(b-1) \cdots a(b-k+1).$$

Compare the product term by term.

Fact 2: $n! \ge \left(\frac{n}{e}\right)^n$. Proof:

$$e^n = \sum_{k>0} \frac{n^k}{k!} \ge \frac{n^n}{n!}.$$

Using these:

$$\frac{n!}{r!r'!(n-r-r')!} \leq \frac{n^{r+r'}}{r!r'!} = \frac{n^{r+r'}}{(r+r')!} \binom{r+r'}{r} \leq (2e)^{r+r'} \left(\frac{n}{e+e'}\right)^{r+r'}.$$

So

$$\mathbb{P} \le \sum_{1 \le r \le \frac{n}{2}} (2e)^{r+r'} \left(\frac{n}{r+r'}\right)^{r+r'} \left(\frac{r+r'}{n}\right)^{lr}$$
$$\le \sum_{1 \le r \le \frac{n}{2}} (2e)^{2r} \left(\frac{(1+\varepsilon)r}{n}\right)^{r(l-1-\varepsilon)}$$

Decompose as $\sum_{1 \le r \le n/2} = \sum_{1 \le r \le K} + \sum_{K < r \le n/2} = S_1 + S_2$. Choose $\varepsilon > 0$ small so that $\gamma = \frac{1+\varepsilon}{2}$ is small. Choose l large so that $\gamma^{l-1-\varepsilon} < \frac{1}{2(2e)^2}$.

$$S_2 \le \sum_{K < r \le \frac{n}{2}} (2e)^{2r} \left(\frac{(1+\varepsilon)}{2}\right)^{r(l-1-\varepsilon)}$$

$$\le \sum_{K < r \le \frac{n}{2}} \left(\frac{1}{2}\right)^r$$

$$\le \frac{1}{2^K}$$

Now S_1 .

$$S_1 \le \sum_{1 \le r \le K} (2e)^{2r} \left(\frac{(1+\varepsilon)r}{n} \right)^{r(l-1-\varepsilon)}$$
$$\le \left(\frac{2K}{n} \right)^{l-2} \sum_{1 \le r \le K} (2e)^{2r}$$
$$\le c^K \left(\frac{K}{n} \right)^l$$

Now let $K = \log \log \log n$, so this is $\leq O((\log \log n)n^{-l}(\log \log \log n)^{l}) \to 0$. Also, $S_1 \leq \frac{1}{2^K}$ term goes to 0.

For the lemma about $\mathbb{P}(d\text{-regular}) \geq c - o(1)$:

$$\pi_{i}(x) = \pi_{i}^{-1}(x)$$

These are the bad things. Use Bonferroni inequalities (the partial sum of inclusion exclusion principle Lecture 10 inequalities).

 (n, d, λ) -graph

n: number of vertices, d-regular, $\lambda_k(A) \in [-\lambda, \lambda], k \neq n$.

Ramanujan graph: $(n, d, 2\sqrt{d-1})$ -graph.

- Petersen $(10, 3, 2\sqrt{2})$ -graph.
- Complete (bipartite), d = n 1 big :(.
- Paley Cay($\mathbb{Z}/p\mathbb{Z}$, $\{x^2:x\in\mathbb{Z}/p\mathbb{Z},x\neq 0\}$), $p\equiv 1\pmod 4$. $d=\frac{p-1}{2}$ big :(.

Alon-Boppana: For every $\varepsilon > 0$ fixed $d \ge 3$, there are finitely many $(n, d, 2\sqrt{d-1} - \varepsilon)$ -graphs.

Bipartite: (n, d, λ) -graph, n vertices, d-regular, $\lambda_k(A) \in [-\lambda, \lambda]$ for $k \neq n, 1$.

Theorem 4.14 (Lubotsky-Phillips-Sanak / Margoulis). Assuming that:

- p prime
- d = p + 1
- n arbitrarily large

Then there exists a $(n, d, 2\sqrt{d-1})$ -graph.

Goal:

Theorem 4.15 (Marcus, Spielman, Srivastava). Assuming that:

• $d \ge 3$

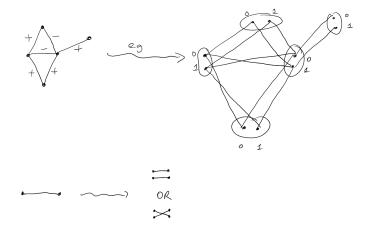
Then there are $(n,d,2\sqrt{d-1})\text{-bipartite}$ graphs for arbitrarily large n.

Strategy: Bilu and Linial. Lifts of graphs:

Definition 4.16 (2-lift). A 2-lift of a graph G = (V, E) is a graph $\hat{G} = (\hat{V}, \hat{E})$ with

- $x \in V \implies x_0, x_1 \in \hat{V}$.
- $xy \in E \implies \text{either } x_0y_0, x_1y_1 \in \hat{E} \text{ or } x_0y_1, x_1y_0 \in \hat{E}.$

(and no other vertices or edges).



Definition 4.17 (Signing). $S: V \times V \to \mathbb{R}$ is a *signing* of G if

$$S(x,y) = \begin{cases} \pm 1 & \text{if } A(x,y) = 1\\ 0 & \text{if } A(x,y) = 0 \end{cases}$$

and S(x,y) = S(y,x) (symmetric). So can think of S as a function $E \to \{\pm 1\}$.

$$A_S^+(x,y) = A(x,y)\mathbbm{1}_{S(x,y)=1}. \ A_S^-(x,y) = A(x,y)\mathbbm{1}_{S(x,y)=-1}. \ \text{Have} \ A = A_S^+ + A_S^-, \ S = A_S^+ - A_S^-.$$

Lemma 4.18. The eigenvalues of \hat{G} are the eigenvalues of A_G (old) together with the eigenvalues of S (new).

Proof.

$$A_{\hat{G}_S} = \begin{pmatrix} A_S^+ & AS_S^- \\ A_S^- & AS_S^+ \end{pmatrix}$$

Let $A\varphi = \lambda \varphi$. Then

$$A_{\hat{G}_S}\begin{pmatrix} \varphi \\ \varphi \end{pmatrix} = \begin{pmatrix} A_S^+\varphi + A_S^-\varphi \\ A_S^-\varphi + A_S^+\varphi \end{pmatrix} = \begin{pmatrix} A\varphi \\ A\varphi \end{pmatrix} = \begin{pmatrix} \lambda\varphi \\ \lambda\varphi \end{pmatrix} = \lambda\begin{pmatrix} \varphi \\ \varphi \end{pmatrix}.$$

Let $S\eta = \mu\eta$. Now

$$A_{\hat{G}_S} \begin{pmatrix} \eta \\ -\eta \end{pmatrix} = \begin{pmatrix} A_S^+ \eta - A_S^- \eta \\ A_S^- \eta - A_S^+ \eta \end{pmatrix} = \begin{pmatrix} S \eta \\ -S \eta \end{pmatrix} = \begin{pmatrix} \mu \eta \\ -\mu \eta \end{pmatrix} = \mu \begin{pmatrix} \eta \\ -\eta \end{pmatrix}.$$

Conjecture 4.19 (Bilu, Linial). If G is d-regular, then there exists a signing $S: E(G) \to \{\pm 1\}$ whose eigenvalues are in $[-2\sqrt{d-1}, 2\sqrt{d-1}]$.

Theorem 4.20 (Bilu, Linial). Can find signings S with eigenvalues λ satisfying $|\lambda| = O(\sqrt{d(\log d)^3})$.

Theorem 4.21 (Marcusm, Spielman, Srivastava). Assuming that:

• G is a d-regular graph

Then there exists a signing with eigenvalues λ with $\lambda \leq 2\sqrt{d-1}$.

Theorem 4.21 implies Theorem 4.15.

• Start with $K_{d,d}$.

- Keep applying Theorem 4.21 to find signing.
- Build lift with that signing.
- 2-lift of bipartite graph is bipartite.
- Spectrum of adjacency matrix of bipartite graph is symmetric around 0.

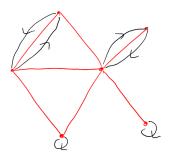
Notation. For $\pi \in \text{Sym}(X)$, let $|\pi|$ be the number of inversions.

Theorem 4.21: $S \sim \text{Unif}(\{\pm 1\}^{E(G)})$.

$$\mathbb{E}_{S} \det(xI - S) = \mathbb{E}_{S} \left(\sum_{\pi \in \text{Sym}(X)} (-1)^{|\pi|} \prod_{y \in V} (xI - S)(y, \pi(y)) \right)$$

$$= \sum_{k=0}^{n} x^{n-k} (-1)^{k} \sum_{\substack{T \subseteq V \\ |T| = k}} \sum_{\pi \in \text{Sym}(T)} \mathbb{E}_{S} \left((-1)^{|\pi|} \prod_{y \in T} (xI - S)(y, \pi(y)) \right)$$

For $xy \in E$: $\mathbb{E}S(x,y)^{2k+1} = 0$, $\mathbb{E}S(x,y)^{2k} = 1$.



$$= \sum_{\substack{k=0\\k \text{ even}}}^{n} x^{n-k} (-1)^k \sum_{\substack{M \text{ matching}\\\text{of size } \leq \frac{k}{2}}} (-1)^{k/2} \dots$$

$$= \sum_{k \geq 0} x^{n-2k} (-1)^k M_k(G)$$

$$= \mu_G(x)$$

where $M_k(G)$ is the number of matchings of size k in G.

 $\mu_G(x)$ is the matching polynomial of G.

Heilman-Lieb-Godsil:

- $\mu_G(x)$ is real rooted for all G.
- If G has degree $\leq d$, then $\mu_G(x)$ has roots in $[-2\sqrt{d-1}, 2\sqrt{d-1}]$.

Lecture 11

Last time, when working on $\det(xI - A_s)$, we showed:

Theorem 4.22 (Godsil-Gutman, 80s).

$$\mathbb{E}_{S \sim \{\pm 1\}} \det(xI - A_s) = \mu_G(x),$$

where

$$\mu_G(x) = \sum_{k \ge 0} x^{n-2k} (-1)^k m_k(G),$$

where $m_k(G)$ is the number of matchings in G with k edges.

Fact: $\mu_G(x)$ is real rooted.

Theorem 4.23 (Heilman-Lieb, 72). Assuming that:

• G is d-regular

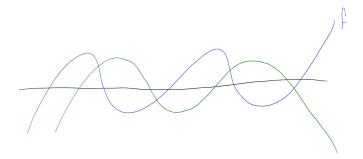
Then

$$\max \operatorname{root} \mu_G(x) \le 2\sqrt{d-1}.$$

If only we could say that maxroot $\mathbb{E}_S \det(xI - A_s)$ is an average of maxroot $\det(xI - A_h)$, $h \in \{\pm 1\}^E$. Hopelessly false:

Definition 4.24 (Interlacing). Let f be a real rooted polynomial of degree n with roots $\alpha_1, \ldots, \alpha_n$ and g a real rooted polynomial of degree n-1 with roots $\beta_1, \ldots, \beta_{n-1}$. We say g interlaces f if

$$\alpha_1 \le \beta_1 \le \alpha_2 \le \dots \le \beta_{n-2} \le \alpha_{n-1} \le \beta_{n-1} \le \alpha_n.$$



Example. If f is real rooted, then so is f', and also f' interlaces f.

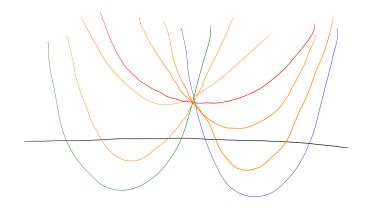
Definition 4.25 (Common interlacement). We say that real rooted polynomials f, g of degree n have a *common interlacement* if there is a polynomial h of degree n+1 such that f and g both interlace h. In other words, if the roots of f and g are $\alpha_1 \leq \cdots \leq \alpha_n$ and $\beta_1 \leq \cdots \leq \beta_n$ respectively, then they have a common interlacement if and only if there are some $\gamma_0 \leq \cdots \leq \gamma_n$ such that

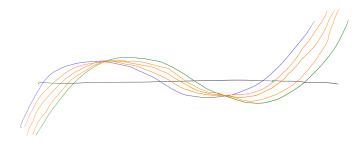
$$\gamma_0 \le \alpha_1, \beta_1 \le \gamma_1 \le \alpha_2, \beta_2 \le \gamma_2 \le \cdots \le \gamma_{n-1} \le \alpha_n, \beta_n \le \gamma_n.$$

Theorem 4.26 (Fell 80). Assuming that:

- f, g are real rooted
- both degree n, monic

Then f and g have a common interlacing if and only if every convex combination of f and g are real rooted.





Proof. Assume f and g without repeated or common roots (general case requires more work and details checking).

 \Leftarrow Let $h_t(x) = tf(x) + (t-1)g(x)$ for $t \in (0,1)$. We know these are real rooted, and want to show that f, g have a common interlacement. Let $\lambda_i(t)$ be the i-th root of $h_t(x)$. $\lambda_i(t)$ includes $(\lambda_i(0), \lambda_i(1)) \subseteq \mathbb{R}$.

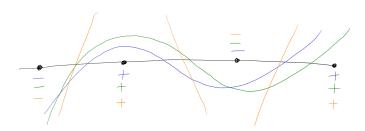
Claim: $(\lambda_I(0), \lambda_I(1))$ are disjoint.

Suppose not. Let λ_k be a root of f and $\lambda_k \in (\lambda_I(0), \lambda_I(1))$. So there exists $t \in (0, 1)$ such that $\lambda_I(t) = \lambda_k$.

$$h_t(\lambda_k) = 0 = tf(\lambda_k) + (1 - t)g(\lambda_k),$$

so $g(\lambda_k) = 0$, contradiction as we assumed no common roots.

 \Rightarrow



The dots represent the roots of the polynomial that interlaces them. By monicness, we get the blue and green +s and -s. Then get the orange ones, and use intermediate value theorem.

Corollary 4.27. Assuming that:

- f, g are real rooted of degree n
- have a common interlacing

Then for all $t \in [0, 1]$

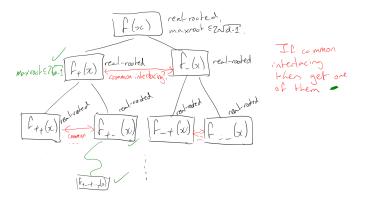
$$\min\{\max(f), \max(g)\} \le \max(tf(x) + (1-t)g(x)).$$

Approach to Theorem 4.21:

$$f(x) = \mathbb{E}_{S \in \{\pm 1\}^E} \det(xI - A_s), |E| = m. \text{ For } h_1, \dots, h_k \in \{\pm 1\} = \{+, -\}, \text{ then}$$

$$f_{h_1, \dots, h_k}(x) = \mathbb{E}_{s_{k+1}, \dots, s_m \in \{\pm 1\}} (\det(xI - A_s) \mid s_1 = h_1, \dots, s_k = h_k).$$

"Method of interlacing families of polynomials"



Theorem 4.28 (Marcus, Spielman, Srivastava (real rooted)). For every $\rho_1, \ldots, \rho_m \in [-1, 1]$ the following polynomial is real rooted

$$\chi_{\rho_1, \dots, \rho_m}(x) = \sum_{S \in \{\pm 1\}^m} \det(xI - A_s) \prod_{J: s_J = 1} \left(\frac{1 + \rho_J}{2}\right) \prod_{J: S_J = -1} \left(\frac{1 - \rho_J}{2}\right).$$

Theorem 4.28 implies Theorem 4.21:

$$f_{h_1,\dots,h_k}(x) = \chi_{h_1,\dots,h_k,0,0,\dots,0}(x).$$

$$\mu_G(x) = \chi_{0,\dots,0}(x).$$

$$tf_{h_1,\dots,h_k,1}(x) + (1-t)f_{h_1,\dots,h_k,-1}(x) = \chi_{h_1,\dots,h_k,2t-1,0,\dots,0}(x).$$

Theorem 4.29 (Marcus, Spielman, Srivastava (matrix)). Assuming that:

• $r_1, \dots, r_m \in \mathbb{R}^n$ are independent random vectors, whose support has ≤ 2 points

Then

$$\mathbb{E}\det\left(xI - \sum_{j=1}^{m} r_j r_j^{\top}\right)$$

is real rooted.

Theorem 4.29 implies Theorem 4.28:

 $\chi_{\rho_1,\ldots,\rho_m}(x)$ is

$$\mathbb{E} \det(xI - A_s).$$

$$Ae = \begin{bmatrix} 0 & \pm 1 \\ \pm 1 & 0 \end{bmatrix} \times A_S = \underbrace{8}_{e} Ae$$

 $\mathbb{E} \det(xI - A_s)$ is real rooted if and only if $\mathbb{E} \det((x+d)I - A_s)$ is real rooted. This equals

$$\mathbb{E} \det(xI + (dI - A_s)).$$

Note

$$dI - A_S = \sum_{x \sim y} (e_x + S(x, y)e_y)(e_x + S(x, y)e_y)^{\top}.$$

Lecture 12 Done.

Definition 4.30 (Real stable). A polynomial $p(z_1, \ldots, z_n) \in \mathbb{R}[z_1, \ldots, z_n]$ is real stable if $p(z_1, \ldots, z_n) \neq 0$ for all $(z_1, \ldots, z_n) \in \mathcal{H}^n$, $\mathcal{H} = \{z \in \mathbb{C} \mid \operatorname{Im} z > 0\}$.

Notice that for a single variable, p(z) is real stable if and only if real rooted.

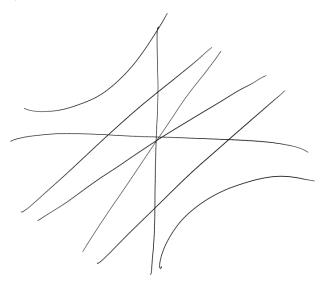
Example. $1 - z_1 z_2$.

Proposition 4.31 (Stable iff real rooted). $p(z_1, \ldots, z_n)$ is real stable if and only if for all $\mathbb{R}^n_{\geq 0}$, $b \in \mathbb{R}^n$, the polynomial $t \mapsto p(at + b)$ is real rooted.

Proof.

 \Rightarrow If p not stable, then there exists $z_0, \ldots, z_n \in \mathcal{H}$ with $p(z_1, \ldots, z_n) = 0$, $z_j = b_j + ia_j$, $a_j > 0$. Then p(ai + b) = 0, t = i.

 \Leftarrow Suppose $\exists a \in \mathbb{R}^n_{\geq 0}, \ b \in \mathbb{R}^n, \ t \in \mathbb{C} \setminus \mathbb{R}$ with p(at+b) = 0. Assume $\operatorname{Im} t > 0$. $z_j + a_j t + b_j \in \mathcal{H}$. $p(z_1, \ldots, z_n) = p(at+b) = 0$.



Proposition 4.32 (Stability of real stable). Assuming that:

• $p(z_1, \ldots, z_n)$ is real stable

Then the following are also:

- $p(z_{\sigma(1)},\ldots,z_{\sigma(n)}), \sigma \in S_n$.
- $p(az_1, z_2, \ldots, z_n), a \in \mathbb{R}_{\geq 0}$.
- $p(z_2, z_2, z_3, \ldots, z_n)$.
- $p(c, z_2, \ldots, z_n), c \in \mathcal{H} \cup \mathbb{R}$.
- $z_1^{d_1}p\left(-\frac{1}{z_1},z_2,\ldots,z_n\right)$.
- $\partial_{z_1} p(z_1,\ldots,z_n)$.
- MAP $(p(z_1,...,z_n))$. MAP $(z_1z_2 + z_2z_3^2 + 2z_1z_4 + z_2z_3^2) = z_1z_2 + 2z_1z_4$.
- If p, q are real stable, then so is pq.

Proposition 4.33 (Mother of all stable polynomials). Assuming that:

• $B \in \mathbb{R}^{d \times d}$ symmetric matrix

• $A_1, \ldots, A_m \in \mathbb{R}^{d \times d}$ positive semi definite

Then $det(B + z_1A_1 + \cdots + z_nA_n)$ is real stable.

Proof. Let $a \in \mathbb{R}^n_{\geq 0}$, $b \in \mathbb{R}^n$. Assume positive definite instead of positive semi definite.

$$\det\left(B + \sum_{j=1}^{n} (a_j t + b_j) A_j\right) = \det\left(\underbrace{\left(\sum_{j=1}^{n} a_j A_j\right)}_{=:A} t + \underbrace{\left(\sum_{j=1}^{n} b_j A_j + B\right)}_{=:C}\right)$$

A is positive definite, and C is symmetric. So

$$= \det(At + C)$$

$$= \det(A^{\frac{1}{2}}(tI + A^{-\frac{1}{2}}CA^{-\frac{1}{2}})A^{\frac{1}{2}})$$

$$= \det A \det(tI + A^{-\frac{1}{2}}CA^{-\frac{1}{2}})$$

The roots are eigenvalues of a real symmetric matrix, hence real.

Proof of Theorem 4.29. Say r_j equals r_j^+ with probability p_j^+ , and equals r_j^- with probability p_j^- . We will use Cauchy Binet:

$$\det(AB) = \sum \det(A_{S \times [n]}) \det(B_{[n] \times C}) TODO$$

$$p(z_1, \dots, z_n) = \mathbb{E} \det \left(\sum_{j=1}^n z_j r_j r_j^\top \right)$$

$$= \mathbb{E} \sum_{\substack{S \subseteq [m] \\ |S| = n}} \det \left(\sum_{j \in S} z_j r_j r_j^\top \right)$$

$$= \mathbb{E} \sum_{\substack{S \subseteq [m] \\ |S| = n}} \left(\prod_{j \in S} z_j \right) \det \left(\sum_{j \in S} r_j r_j^\top \right)$$

$$\det \left(\mathbb{E} \sum_{j=1}^n z_j r_j r_j^\top \right) = \det \left(\sum_{j=1}^n z_j \mathbb{E} r_j r_j^\top \right)$$

is real stable since $\mathbb{E}r_jr_j^{\top} \geq 0$ is a covariance matrix.

$$= \det \left(\sum_{j=1}^{m} z_{j} (p_{j}^{+} r_{j}^{+} (r_{j}^{+})^{\top} + p_{j}^{-} r_{j}^{-} (r_{j}^{-})^{\top}) \right)$$

$$= \sum_{\substack{S \subseteq [m] \\ |S| = n}} \left(\prod_{j \in S} z_{j} \right) \sum_{n \in \{\pm 1\}^{S}} \det(p_{j}^{h(j)} r_{j}^{h(j)} (r_{j}^{h(j)})^{\top}) + \text{"terms with squares"}$$

So the earlier thing is real stable. So

$$\mathbb{E}\det\left(\sum_{j=1}^m z_j r_j r_j^\top\right)$$

is real stable. So

$$\mathbb{E} \det \left(\sum_{j=1}^{m} z_j r_j r_j^{\top} + \sum_{j=1}^{m} x_j e_j e_j^{\top} \right)$$

is real stable. Take $z_j = -1$, $x_j = x$. Then

$$\mathbb{E}\det\left(xI - \sum_{j=1}^{m} r_j r_j^{\top}\right)$$

is real stable.

Theorem 4.34 (Godsil). Assuming that:

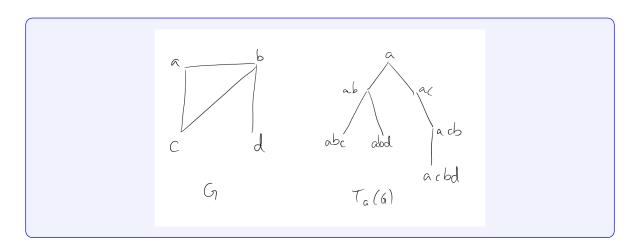
- G is d-regular
- $\lambda_1 \leq \cdots \leq \lambda_n$ are the roots of $\mu_G(x)$

Then

$$\sum_{k=1}^{n} \lambda_k^l = \sum_{a} W_a^l(G),$$

where $W_a^l(G)$ is the number of closed walks of length l from a in the path tree $T_a(G)$ of G.

Definition 4.35 (Path tree). Example: $T_a(G)$



Proof of ?? implies Theorem 4.23. $W_a^l(G) \leq W_a^l(\prod_d) \leq (2\sqrt{d-1} + o_l(1))^l$.

$$\lambda_n^l \leq \sum \lambda_k^l = \sum_a W_a^l(G) \leq n(2\sqrt{d-1} + o_l(1))^l.$$

$$\lambda_n \le n^{\frac{1}{l}} (2\sqrt{d-1} + o_l(1)).$$

Take
$$l \to \infty$$
.

Proof of $\ref{eq:main_condition}.$ $\mu_G'(x) = \sum_a \mu_{G-a}(x)$ Hence

$$\sum_{a} \sum_{k \ge 0} x^{n-1-2k} (-1)^k m_k (G-a) = \sum_{k \ge 0} (n-2k) x^{n-1-2k} (-1)^k m_k (G)$$
$$= \mu'_G(x)$$

$$\mu_{G}(x) = x\mu_{G-a}(x) - \sum_{b \sim a} \mu_{G-a-b}(x)$$

$$m_{k}(G) = m_{k}(G-a) + \sum_{b \sim a} m_{k-1}(G-a-b)$$

$$x^{n-2k}(-1)^{k} m_{k}(G) = x \cdot x^{n-1-2k}(-1)^{k} m_{k}(G-a) - \sum_{b \sim a} x^{n-2-2(k-1)}(-1)^{k-1} m_{k-1}(G-a-b)$$

$$\sum_{a} \frac{\mu_{G-a}(x)}{\mu_{G}(x)} = \frac{\mu'_{G}(x)}{\mu_{G}(x)}$$

$$= \sum_{j=1}^{n} \frac{1}{x - \lambda_{j}}$$

$$= \frac{1}{x} \sum_{j=1}^{n} \frac{1}{1 - \frac{\lambda_{j}}{x}}$$

$$= \frac{1}{x} \sum_{j=1}^{n} \sum_{l \geq 0} \frac{\lambda_{j}^{l}}{x^{l}}$$

$$= \frac{1}{x} \sum_{l \geq 0} \frac{\sum_{j} \lambda_{j}^{l}}{x^{l}}$$

Claim: $\frac{\mu_{G-a}(x)}{\mu_G(x)} = \frac{1}{x} \sum_{l \ge 0} \frac{W_a^l(G)}{x^l}.$

$$\frac{\mu_{G-a}(x)}{\mu_{G}(x)} = \frac{\mu_{G-a}(x)}{x\mu_{G-a}(x) - \sum_{b \sim a} \mu_{G-a-b}(x)}$$

$$= \frac{1}{x} \frac{1}{1 - \frac{1}{x} \sum_{b \sim a} \frac{\mu_{G-a-b}(x)}{\mu_{G-a}(x)}}$$

$$= \frac{1}{x} \cdot \sum_{k \geq 0} \left(\frac{1}{x} \sum_{b \sim a} \frac{\mu_{G-a-b}(x)}{\mu_{G-a}(x)} \right)^{k}$$

$$= \frac{1}{x} \sum_{k \geq 0} \frac{1}{x^{k}} \left(\sum_{b \sim a} \frac{1}{x} \sum_{l \geq 0} \frac{W_{b}^{l}(G-a)}{x^{l}} \right)^{k}$$

$$= \frac{1}{x} \sum_{k \geq 0} \frac{1}{x^{2k}} \left(\sum_{b_{1} \sim a} \sum_{l_{1} \geq 0} \frac{W_{G}^{l}(G-a)}{x^{l_{1}}} \right) \cdots \left(\sum_{b_{k} \sim a} \sum_{l_{k} \geq 0} \frac{W_{b_{k}}^{l}(G-a)}{x^{l_{k}}} \right)$$

$$= \frac{1}{x} \sum_{l \geq 0} \frac{W_{a}^{l}(G)}{x^{l}}$$

Why? A tree-like walk in $W_a^l(G)$ that visits a exactly k times is determined by:

• A sequence b_1, \ldots, b_k of neighbours of a.

• A sequence $\gamma_1, \ldots, \gamma_k$ of walks in $T_{b_i}^{l_i}(G-a)$ where $2k+l_1+\cdots+l_k=l$.

Index

```
adjm 7, 9, 18, 19, 21, 25, 30 degm 7  (d,\varepsilon)\text{-expander }18 edgeexp 11, 12 \varepsilon\text{-approximation }17, 18 graphexp 11, 12, 13, 15, 16, 25, 26 Hermitian 2, 3 lapm 7, 8, 9, 12, 17, 18, 19, 20, 23, 24, 25 lord 17, 18  (n,d,\lambda)\text{-graph }18, 20, 21, 22, 23, 25, 28 q 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 23, 24 setexp 11, 12, 13, 15, 21, 22
```