\setlength{\parindent}{0pt} \setlength{\parskip}{1em} \DeclareMathOperator{\Herm}{Herm} \newcommand{\GHom}{\glshyperlink[\ensuremath{\Hom}]{GHom_notation}} \newcommand\isocomp[1]{\glshyperlink[$#1$-isotypic component]{iso_component}} \newcommand\isocomppl[1]{\glshyperlink[$#1$-isotypic components]{iso_component}} \newcommand\chichar{\glshyperlink[\ensuremath{\chi}]{char_rep_notation}} \newcommand\Ginv[1][G]{\glshyperlink[$#1$-invariant]{Ginv}} \newcommand\Ginvpl[1][G]{\glshyperlink[$#1$-invariants]{Ginv}} \newcommand\Ginvip[1][G]{\glshyperlink[$#1$-invariant inner product]{Ginv_ip}} \newcommand\Glin[1][G]{\glshyperlink[$#1$-linear]{Glin}} \newcommand\repdim[1]{\glshyperlink[$#1$-dimensional]{rep_dim}} \renewcommand\eslink{http://www.dpmms.cam.ac.uk/study/II/RepresentationTheory/} \newcommand\indicator[1]{\mathbbm{1}_{#1}} \def\Gip\langle#1\rangle_G{\glshyperlink[\ensuremath{\langle #1 \rangle_G}]{Gip_class_funcs_notation}} \newcommand\clsfn{\mathcal{C}} \newcommand\tensprod{\glshyperlink[\ensuremath{\otimes}]{tensor_product_notation}} \newcommand\tprod{\tensprod} \newcommand\tensvecprod{\glshyperlink[\ensuremath{\otimes}]{tensor_product_notation}} \newcommand\tvprod{\tensvecprod} \newcommand\tenslinprod{\glshyperlink[\ensuremath{\otimes}]{tens_lin_prod_notation}} \newcommand\tlprod{\tensvecprod} \newcommand\tensrepprod{\glshyperlink[\ensuremath{\otimes}]{tens_rep_prod_notation}} \newcommand\trprod{\tensrepprod} \newcommand\charring{\glshyperlink[\ensuremath{R}]{char_ring_notation}} \newcommand\asquare{\Lambda^2} \newcommand\ssquare{S^2} \def\tpower#1^#2{\glshyperlink[\ensuremath{#1^{\otimes #2}}]{tpower_notation}} \newcommand\spow[2]{S^{#1} #2} \newcommand\apow[2]{\Lambda^{#1} #2} \newcommand\awedge{\wedge} \newcommand\anwedge{\wedge} \newcommand\tensalg{T} \newcommand\symmalg{S} \newcommand\altalg{\Lambda} \DeclareMathOperator{\Irr}{Irr} \newcommand\FXW{\glshyperlink[\ensuremath{\mathcal{F}}]{FXW_notation}} \DeclareMathOperator{\Indinternal}{Ind} \newcommand\Ind{\glshyperlink[\ensuremath{\Indinternal}]{Ind_notation}} \let\Res\relax \DeclareMathOperator{\internalRes}{Res} \newcommand\Res{\glshyperlink[\ensuremath{\internalRes}]{Res_notation}} \newcommand\indGamma{\glshyperlink[\ensuremath{r}]{gamma_induction_notation}} \def\leftgrep#1^#2#3{\glshyperlink[\ensuremath{{}^{#2}#3}]{leftgrep_notation}} \newcommand\simeqto{\stackrel{\sim}{\to}} \newcommand\convring[2]{\glshyperlink[\ensuremath{#1#2}]{conv_ring_notation}} \newcommand\convZ{\glshyperlink[\ensuremath{Z}]{conv_center_notation}} \newcommand\clsum{\glshyperlink[\ensuremath{C}]{clsum_notation}} \newcommand\algO{\glshyperlink[\ensuremath{\mathcal{O}}]{algO_notation}} \newcommand\homega{\omega} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\On}{O} \DeclareMathOperator{\SO}{SO} \DeclareMathOperator{\U}{U} \DeclareMathOperator{\SU}{SU} \def\Gint_#1{\glshyperlink[\ensuremath{\int_{#1}}]{Haar_int_notation}} \def\vGint_#1{\glshyperlink[\ensuremath{\int_{#1}}]{vHaar_int_notation}} \newcommand\cts{\glshyperlink[\ensuremath{C}]{cts_func_notation}} \def\Gipint\langle#1,#2\rangle{\glshyperlink[\ensuremath{\langle #1, #2\rangle}]{Gip_int_notation}} \newcommand\simbijto{\stackrel{~}{\leftrightarrow}} \newcommand\Lp[1][p]{L^{#1}} \def\suev#1[#2){#1[#2)^{\glshyperlink[\text{ev}]{ev_notation}}}