%! TEX root = RT.tex % vim: tw=50 % 25/10/2023 11AM \begin{corollary*} The number of \gls{irred} $\CC$-\glspl{rep} of $G$ is the number of conjugacy classes in $G$. \end{corollary*} \begin{notation*} For $g \in G$ we'll write $[g]_G = \{xgx^{-1} \st x \in G\}$ for the conjugacy class containing $g$. \end{notation*} \begin{corollary*} For $g \in G$, $\chichar(g) \in \RR$ for every \gls{irred} \gls{char_rep} $\chichar$ if and only if $[g]_G = [g^{-1}]_G$. \end{corollary*} \begin{proof} Since $\chichar(g^{-1}) = \ol{\chichar(g)}$, $\chichar(g) \in \RR \iff \chichar(g) = \chichar(g^{-1})$. So we can rephrase the statement as \[ \text{$\chichar(g) = \chichar(g^{-1})$ for every \gls{char_rep} $\chichar$} \iff [g]_G = [g^{-1}]_G \] Since the (\gls{irred}) \gls{char_rep} span $\mathcal{C}_G$, \[ \text{$\chichar(g) = \chichar(g^{-1})$ for every (\gls{irred}) \gls{char_rep}} \iff \text{$f(g) = f(g^{-1})$ for every $f \in \mathcal{C}_G$} \] Since $\indicator{[g]_G}$ is a \gls{cls_fn} $f(g) = f(g^{-1})$ for every $f \in \mathcal{C}_G$ $\iff$ $[g]_G = [g^{-1}]_G$. \end{proof} \subsection{Character Tables} \begin{flashcard}[char-table-defn] \begin{definition*}[Character table] \glsnoundefn{char_table}{character table}{character tables} \cloze{ The \emph{character table} of a finite group is defined as follows. We list the conjugacy classes of $G$, $[g_1]_G, \ldots, [g_r]_G$ (by convention $g_1 = e$ always). We list the \gls{irred} \gls{char_rep} of $G$ (over $\CC$) $\chichar_1, \ldots, \chichar_r$ (by convention $\chichar_1 = \indicator{G}$ the \gls{char_rep} of \gls{triv_rep}). Then we write the matrix \begin{center} \begin{tabular}{c|c|c|c|c|c|c|c} & $e$ & $g_2$ & $g_3$ & $\cdots$ & $g_j$ & $\cdots$ & $g_r$ \\ \hline $\chichar_1$ & $1$ & $1$ & $1$ & $\cdots$ & $1$ & $\cdots$ & $1$ \\ $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ \\ $\chichar_i$ & $\cdots$ & $\cdots$ & $\cdots$ & $\cdots$ & $\chichar_i(g_j)$ & $\cdots$ & $\cdots$ \\ $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ \\ $\chichar_i$ & $\cdots$ & $\cdots$ & $\cdots$ & $\cdots$ & $\cdots$ & $\cdots$ & $\cdots$ \\ \end{tabular} \end{center} We sometimes write $|[g_i]_G|$ above $g_i$ and sometimes $|\mathcal{C}_G(g_i)|$ (recall $|[g_i]_G| |\mathcal{C}_G(g_i)| = |G|$ by Orbit-Stabiliser Theorem).} \end{definition*} \end{flashcard} \subsubsection*{Examples} \begin{enumerate}[(1)] \item $C_3 = \langle x \rangle$. Let $\omega = e^{2\pi i/3}$. So $\omega^2 = \omega^{-1} = \ol{\omega}$. \begin{center} \begin{tabular}{c|c|c|c} & $e$ & $x$ & $x^2$ \\ \hline $\chichar_1$ & $1$ & $1$ & $1$ \\ $\chichar_2$ & $1$ & $\omega$ & $\ol{\omega}$ \\ $\chichar_3$ & $1$ & $\ol{\omega}$ & $\omega$ \end{tabular} \end{center} Note the rows are indeed orthogonal with respect to $\Gip \langle \bullet, \bullet \rangle_G$ and the columns are orthogonal with respect to standard Hermitian inner product. \item $S_3$. Conjugacy classes are $\{e\}$, $\{(12), (13), (23)\}$, $\{(123), (132)\}$. So there must be $3$ \gls{irred} \glspl{rep} / \gls{char_rep}. $\chichar_1 = \indicator{G}$ is the \gls{char_rep} of the \gls{triv_rep}. $\chichar_2 = \eps : S_3 \to \{\pm 1\} \subset \CC^\times$ (where $\eps$ is the sign of a permutation) is a homomorphism and so a \repdim{1} \gls{rep} and so a \gls{char_rep}. To compute $\chichar_3$ we can use orthogonality of \glsref[char_rep]{characters}. Let $\chichar_3(e) = a$, $\chichar_3((12)) = b$, $\chichar_3((123)) = c$. Since every $g$ in $S_3$ is conjugate to $g^{-1}$ in $S_3$, $a, b, c \in \RR$. Then \[ 0 = \Gip\langle \indicator{}, \chichar_3 \rangle_G = \frac{1}{6} (a + 3b + 2c) \] \[ 0 = \Gip\langle \eps, \indicator{} \rangle_G = \frac{1}{6} (a - 3b + 2c) \] which can be solved to give $b = 0$, $a = -2c$. Then \[ 1 = \Gip\langle \chichar_3, \chichar_3 \rangle_G = \frac{1}{6}(a^2 + 3b^2 + 2c^2) \] So $c^2 = 1$. But $a$ is the dimension of the \gls{rep} with \gls{char_rep} $\chichar_3$ so $a \ge 1$. So $a = 2$, $c = -1$. \begin{center} \begin{tabular}{c|ccc} $|C_{S_3}(g_i)|$ & $6$ & $2$ & $3$ \\ $g_i$ & $e$ & $(12)$ & $(123)$ \\ \hline $\indicator{}$ & $1$ & $1$ & $1$ \\ $\eps$ & $1$ & $-1$ & $1$ \\ $\chichar_3$ & $2$ & $0$ & $-1$ \end{tabular} \end{center} In fact we already know about $\chichar_3$ as the \gls{char_rep} of the \gls{rep} of $S_3$ ($\cong D_6$) on $\RR^2$ induced from the symmetries of a triangle. Once again the columns are orthogonal and their lengths are $1^2 + 1^2 + 2^2 = 6 = |C_{S_3}(e)|$, $1^2 + (-1)^2 + 0^2 = 2 = |C_{S_3}((12))|$, $1^2 + 1^2 + (-1)^2 = 3 = |C_{S_3}((123))|$. \end{enumerate} \begin{proposition*}[Column orthogonality] If $G$ is a finite group and $\chichar_1$, \ldots, $\chichar_r$ is a complete list of its \gls{irred} \glsref[char_rep]{characters} then for $g, h \in G$, \[ \sum_{i = 1}^r \ol{\chichar_i(g)}\chichar_i(h) = \begin{cases} 0 & \text{if $[g]_G \neq [h]_G$} \\ |C_G(g)| & \text{if $[g]_G = [h]_G$} \end{cases} \] In particular \[ \sum_{i = 1}^ (\dim V_i)^2 = \sum_{i = 1}^r \chichar_i(e)^2 = |G| \] where $V_i$ is a \gls{rep} such that $\chichar_{V_i} = \chichar_i$. \end{proposition*} \begin{proof} Let $X$ be the \gls{char_table} viewed as a matrix $X_{ij} = \chichar_i(g_j)$ and $D$ be the diagonal (real) matrix with $D_{ii} = |C_G(g_i)|$. Orthogonality of characters gives \begin{align*} \delta_{ij} &= \langle \chichar_i, \chichar_j \rangle_G \\ &= \sum_k \frac{1}{|C_G(g_k)|} \ol{\chichar_i(g_k)} \chichar_j(g_k) \\ &= \sum_k \frac{1}{D_{kk}} \ol{\chichar_{ik}} \chichar_{jk} \\ &= (\ol{X} D^{-1} X^\top)_{ij} \end{align*} So $\ol{X} D^{-1} X^\top I$ since $X$ is square, $X$ is invertible and $\ol{D^{-1} X^\top} = X^{-1}$ so $D = \ol{X^\top} X$ since $D$ is real, i.e. $\sum_k \ol{\chichar_k(g_i)} \chichar_k(g_j) = D_{ij} = \delta_{ij} |C_G(g_i)|$. \end{proof} \subsection{Permutation Representations} If recall that if a group $G$ acts on a finite set $X$, $\CC X = \{f : X \to \CC\}$ is a \gls{rep} via \[ (g \cdot f)(x) = f(g^{-1} x) \] or equivalently $g \cdot \delta_x = \delta_g x ~\forall g \in G, x \in X$. \begin{lemma*} If $\chichar$ is the \gls{char_rep} of $\CC X$ then $\chichar(g) = |\{x \in X \st gx = x\}|$. \end{lemma*} \begin{proof} If $X = \{x_1, \ldots, x_d\}$ then with respect to the basis $\delta_{x_1}, \ldots, \delta_{x_d}$ the matrix of $g$ has $i$-th column with a $1$ in entry $j$ and $0$ elsewhere if $g \cdot x_i = x_j$. So $i$-th column contributes $1$ to the trace if $i = j$ and $0$ otherwise. \end{proof}