%! TEX root = RT.tex % vim: tw=50 % 23/10/2023 11AM \subsection{Orthogonality of characters} Assume $G$ is always a finite group and $k = \CC$. Recall \[ \mathcal{C}_G \defeq \{f : G \to \CC : f(hgh^{-1}) = f(g) ~\forall g, h \in G\} \le \CC G \] and if $O_1, \ldots, O_r$ are the conjugacy classes then the indicator functions $\indicator{O_1}, \ldots, \indicator{O_r}$ are a basis. \glssymboldefn{Gip_class_funcs}{G inner product}{G inner product} We can define a Hermitian inner product in $\mathcal{C}_G$ (restricted from one on $\CC G$) via \[ \langle f_1, f_2 \rangle_G \defeq \frac{1}{|G|} \sum_{g \in G} \ol{f_1(g)} f_2(g) \] The indicator functions $\indicator{O_i}$ are pairwise orthogonal with respect to $\langle \bullet, \bullet \rangle_G$ and moreover, \[ \langle \indicator{O_i}, \indicator{O_i} \rangle_G = \frac{1}{|G|} |O_i| = \frac{1}{|C_G(x_i)|} \] for any $x_i \in O_i$. Thus if $x_1, \ldots, x_r$ are representatives of $O_1, \ldots, O_r$, then \[ \langle f_1, f_2 \rangle_G = \sum_{i = 1}^r \frac{1}{|C_G(x_i)|} \ol{f_1(x_i)} f_2(x_i) \] for $f_1, f_2 \in \mathcal{C}_G$. \begin{example*} If $G = D_6 = \langle s, t \mid s^2 = t^3 = e, sts^{-1} = t^{-1} \rangle$ then \[ \langle f_1, f_2 \rangle_{D_6} = \frac{1}{6} \ol{f_1}(e) f_2(e) + \half \ol{f_1(s)} f_2(s) + \third \ol{f_1(t)} f_2(t) .\] In particular if $V$ is the natural \repdim{2} \gls{rep} of $D_6$ and $\CC$ is the \gls{triv_rep} then \[ \chichar_\CC = \indicator{G} \] \[ \chichar_V(e) = 2, \chichar_V(s) = 0, \chichar_V(t) = -1 \] \[ \langle \chichar_\CC, \chichar_\CC \rangle_{D_6} = \frac{1}{6} \cdot 1 + \half \cdot 1 + \third \cdot 1 = 1 \] \[ \langle \chichar_V, \chichar_V \rangle_{D_6} = \frac{1}{6} 2^2 + \half 0^2 + \third (-1)^2 = 1 \] \[ \langle \chichar_\CC, \chichar_V \rangle_{D_6} = \frac{1}{6} 2 + \half 0 + \third (-1) = 0 \] \end{example*} \begin{lemma*} If $V$ and $W$ are (\gls{uni_rep}) \glspl{rep} of $G$ then \[ \chichar_{\Hom_k(V, W)}(g) = \ol{\chichar_V}(g) \chichar_W(g) \qquad \forall g \in G \] \end{lemma*} \begin{proof} Given $g \in G$ we can choose bases $v_1, \ldots, v_n$ of $V$ and $w_1, \ldots, w_m$ of $W$ such that $g \cdot v_i = \lambda_i v_i$ and $g \cdot w_j = \mu_j w_j$ for some $\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_n \in \CC$. Then the functions $\alpha_{ij}(v_k) = \delta_{jk} w_i$ extend to linear maps $\alpha_{ij} \in \Hom_k(V, W)$ that form a basis (with respect to given basis $\alpha_{ij}$ as \glsref[rep]{represented} by a matrix with $0$s everywhere except a single $1$ in the $i, j$ position). \begin{align*} (g \cdot \alpha_{ij})(v_k) &= g(\alpha_{ij} (g^{-1} v_k)) \\ &= g(\alpha_{ij}(\lambda_k^{-1} v_k)) \\ &= \lambda_k^{-1}(g(\delta_{jk} w_i)) \\ &= \lambda_k^{-1} \mu_i \delta_{jk} w_i \end{align*} i.e. $g \cdot \alpha_{ij} = \lambda_j^{-1} \mu_i \alpha_{ij}$. So $\chichar_{\Hom_k(V, W)}(g) = \sum_{i, j} \lambda_j^{-1} \mu_i = \chichar_V(g^{-1}) \chichar_W(g) = \ol{\chichar_V(g)} \chichar_W(g)$. \end{proof} \begin{flashcard}[dim-of-Gfix-lemma] \begin{lemma*} If $U$ is a \gls{rep} of $G$ then \[ \dim U^G = \cloze{\frac{1}{|G|} \sum_{g \in G} \chichar_V(g) = \langle \indicator{G}, \chichar_V \rangle_G} .\] \end{lemma*} \begin{proof} \cloze{ We've seen \hyperref[UG_projection]{before} that $\pi : U \to U_j$, $\pi(u) = \frac{1}{|G|} \sum_{g \in G} g \cdot u$ is a projection of $U$ onto $U^G$ and so $\dim U^G = \Trace \pi = \frac{1}{|G|} \sum_{g \in G} \Trace(g) = \frac{1}{|G|} \sum_{g \in G} \chichar_U(g)$. } \end{proof} \end{flashcard} \begin{flashcard}[dim-HomG-V-W-prop] \begin{proposition*} If $V$ and $W$ are any \glspl{rep} of $G$ then \[ \dim \GHom_G(V, W) = \cloze{\langle \chichar_V, \chichar_W \rangle_G} \] \end{proposition*} \begin{proof} \cloze{ \begin{align*} \dim \GHom_G(V, W) &= \dim (\Hom_k(V, W))^G \\ &= \langle \indicator{G}, \chichar_{\Hom_k(V, W)} \rangle_G \\ &= \frac{1}{|G|} \sum_{g \in G} \ol{\chichar_V}(g) \chichar_W(g) \\ &= \langle \chichar_V, \chichar_W \rangle_G \qedhere \end{align*} } \end{proof} \end{flashcard} \begin{flashcard}[orthogonality-of-chars-thm] \begin{theorem*}[Orthogonality of characters] \label{orthog_of_chars} If $V$ and $W$ are \gls{irred} $\CC$-\glspl{rep} of $G$, then \[ \langle \chichar_V, \chichar_W \rangle =\cloze{ \begin{cases} 1 & V \simeq W \\ 0 & V \not\simeq W \end{cases} } \] \end{theorem*} \begin{proof} \cloze{ Use the fact that $\dim \GHom_G(V, W) = \langle \chichar_V, \chichar_W \rangle_G$ and \nameref{schurs_lemma}. If $\chichar_V = \chichar_W$ with $V$ and $W$ \gls{irred} then $\langle \chichar_V, \chichar_W \rangle_G = \langle \chichar_V, \chichar_V \rangle_G > 0$ since $\chichar_V \neq 0$ so $\dim \GHom_G(V, W) > 0$ and $V \simeq W$ by \nameref{schurs_lemma}. } \end{proof} \end{flashcard} \begin{flashcard}[rep-decomp-coro] \begin{corollary*} If $(\rho, V)$ is a \gls{rep} of $G$ then \[ V \simeq \bigoplus_{\text{$W$ \gls{irred} \glspl{rep} of $G / \simeq$}} \langle \chichar_W, \chichar_\rho \rangle_G W \] In particular if $\sigma$ is a another \gls{rep} with $\chichar_\rho = \chichar_\sigma$ then $\sigma \simeq \rho$. \end{corollary*} \begin{proof} \cloze{ By \nameref{maschkes_thm} there are $n_w \ge 0$ such that \[ V \simeq \bigoplus_{\text{$W$ \gls{irred}}} n_w W \] Moreover, we've seen before that $n_w = \dim \GHom_G(W, V) = \langle \chichar_W, \chichar_\rho \rangle_G$ by the previous Proposition. So the first part follows. Since \[ \bigoplus_{\text{$W$ \gls{irred}}} \langle \chichar_W, \chichar_\rho \rangle_G W \] depends only on $\chichar_\rho$ (up to \gls{rep_isom}), the second part follows. } \end{proof} \end{flashcard} Notice this proof depends on \nameref{maschkes_thm} / \gls{comp_red} as well as orthogonality of \glsref[char_rep]{characters}. For example, if we have the two representations of $(\ZZ, +)$ determined by \[ \rho(1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \sigma(1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] they are not \gls{rep_isom} but have the same \glsref[char_rep]{characters}. $\rho(n) = \sigma(n) = 2 ~\forall n \in \ZZ$. Indeed both have trivial \glspl{subrep} $\langle e_1 \rangle$ with trivial quotients. Slogan: ``\glsref[char_rep]{characters} cannot see gluing data''. \begin{flashcard}[irred-iff-chars-coro] \begin{corollary*} If $\rho$ is a $\CC$-\gls{rep} of $G$ with \gls{char_rep} $\chichar$ then \[ \text{$\rho$ is \gls{irred}} \iff \cloze{\langle \chichar, \chichar \rangle_G = 1} .\] \end{corollary*} \begin{proof} \phantom{} \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] \cloze{Is clear from orthogonality of \glsref[char_rep]{characters}.} \item[$\Leftarrow$] \cloze{$\rho$ decomposes as $\rho \simeq \bigoplus n_w W$ with $n_w \ge 0$. Then $\chichar = \sum n_w \chichar_W$ but \[ \langle \chichar, \chichar \rangle_G = \sum n_w^2 \] so $\langle \chichar, \chichar \rangle_G = 1 \implies \chichar = \chichar_w$ for some $W$.} \qedhere \end{enumerate} \end{proof} \end{flashcard} This is a good way to prove \glsref[irred]{irreducibility}. \begin{example*} If $V$ is the natural \repdim{2} \gls{rep} of $D_6$ then $\langle \chichar_V, \chichar_V \rangle_{D_6} = 1$ and so $V$ is \gls{irred}. \end{example*} \begin{theorem*}[The character table is square] The \gls{irred} \glsref[char_rep]{characters} of $G$ form an orthonormal basis of $\mathcal{C}_G$ with respect to $\langle \bullet, \bullet \rangle_G$. \end{theorem*} \begin{proof} We've already seen that the \gls{irred} \glsref[char_rep]{characters} form an orthonormal set so it remains to prove that they span. Let $I = \langle \chichar_1, \ldots, \chichar_s \rangle$ be their $\CC$-linear span. It suffices to show that \[ I^\perp \defeq \{g \in \mathcal{C}_G : \langle f, \chichar_i \rangle_G = 0 \text{ for $i = 1, \ldots, s$}\} = 0 .\] For $f \in \mathcal{C}_G$ and $(\rho, V)$ a \gls{rep} of $G$ show \[ \varphi_{f, V} = \frac{1}{|G|} \sum_{g \in G} \ol{f(g)} \rho(g) \in \GHom_G(V, V) \] and use \nameref{schurs_lemma} to show if $f \in I^\perp$ then $\varphi_{f, v} = 0$. Finally show $0 = \varphi_{f, \CC G} \delta_e = \frac{1}{|G|} \ol{f}$ so $f = 0$. \[ I = \langle \chichar_1, \ldots, \chichar_s \rangle \] where $\chichar_1,\ldots, \chichar_s$ are the \gls{irred} \glsref[char_rep]{characters}. For $f \in \mathcal{C}_G$ and a \gls{rep} $(\rho, V)$ we can define \[ \varphi_{f, V} = \varphi = \frac{1}{|G|} \sum_{g \in G} \ol{f(g)} \rho(g) \in \GHom_\CC(V, V) \] If $h \in G$ then \begin{align*} \rho(h)^{-1} \varphi \rho(h) &= \frac{1}{|G|} \sum_{g \in G} \ol{f(g)} \rho(h^{-1} gh) \\ &= \frac{1}{|G|} \sum_{g \in G} \ol{f(hgh^{-1})} \rho(g) &&\text{since $g \mapsto hgh^{-1}$ is a bijection} \\ &= \frac{1}{|G|} \sum_{g \in G} \ol{f(g)} \rho(g) &&\text{since $f \in \mathcal{C}_G$} \\ &= \varphi \end{align*} So $\varphi \rho(h) = \rho(h) \varphi ~\forall h \in G$ and $\varphi \in \GHom_G(V, V)$. If in particular, $(\rho, V)$ is \gls{irred}, then $\exists \lambda \in \CC$ such that $\varphi_{f, V} = \lambda \id_\CC$ since $\CC$ is algebraically closed. Then $\Gip\langle f, \chichar_\rho \rangle_G = \Trace \varphi_{f, V} = \lambda \dim V$. So if $f \in I^\perp$ then $\lambda = 0$ and $\varphi_{f, V} = 0$. But in general if $(\rho, V)$ is any \gls{rep}, then $V \simeq \bigoplus V_i$ for some \gls{irred} \glspl{rep} $V_i$ (\nameref{maschkes_thm}) and $\rho = \bigoplus \rho_i$ and $\varphi_{f, V} = \bigoplus \varphi_{f, V_i}$. So again if $f \in I^\perp$, then $\varphi_{f, V} = 0$. In particular if $V = \CC G$ is the \gls{reg_rep} then \[ 0 = \varphi_{f, \CC G} \delta_e = \frac{1}{|G|} \sum_{g \in G} \ol{f(g)} \delta_g = \frac{1}{|G|} \ol{f} \] So $f = 0$ and $I^\perp = 0$. \end{proof}