%! TEX root = RT.tex % vim: tw=50 % 20/10/2023 11AM \begin{flashcard}[finite-abelian-has-G-irred-C-reps-prop] \begin{proposition*} If $G$ is a finite abelian group then $G$ has exactly \cloze{$|G|$ \gls{irred}} $\CC$-\glspl{rep}. \end{proposition*} \begin{proof} \cloze{ We saw \lastlecture\ that all \gls{irred} \glspl{rep} of an abelian group have \gls{rep_deg} $1$. \[ S = \{\text{\gls{simple} \glspl{rep} of $G$}\} / \sim \leftrightarrow \Hom(G, \CC^\times) \] Moreover, if $G = H \times K$, then \[ \Hom(G, \CC^\times) \leftrightarrow \Hom(H, \CC^\times) \times \Hom(K, \CC^\times) \qquad \varphi \mapsto (\varphi|_H, \varphi|_K) \] (need $\CC^\times$ is abelian to get surjectivity). Now by structure theorem for finite abelian groups, $G \simeq C_{n_1} \times \cdots \times C_{n_r}$ for some $n_1,\ldots n_r \in \NN$. So by a simple induction argument we can reduce to the case where $G$ is cyclic, $G \cong C_n = \langle x \rangle$ say. Then $\rho \in \Hom(G, \CC^\times)$ is determined by $\rho(x)$ and $\rho(x)^n = 1$, i.e. $\rho(x)$ is an $n$-th root of unity. Moreover, for $j = 0, \ldots, n - 1$, $x^k \mapsto e^{2\pi ijk/n}$ defines a \glsref[rep_deg]{$1$-dimensional} \gls{rep} of $G$. } \end{proof} \end{flashcard} \begin{lemma*} \refsteplabel[Lemma]{lec7_sum_is_zero_lemma} If $(\rho_1, V_1)$ and $(\rho_2, V_2)$ are non-\gls{rep_iso} \glsref[rep_deg]{$1$-dimensional} \glspl{rep} of a finite group $G$, then \[ \sum_{g \in G} \rho_1(g^{-1}) \rho_2(g) = 0 \] (Note $\rho_1(g^{-1}) = \rho_1(g)^{-1}) = \ol{\rho_1(g)}$ since $\rho_1(g)^j = 1$ for some $j$ if $k = \CC$). \end{lemma*} \begin{proof} We've seen that $\Hom_k(V_1, V_2)$ is a \gls{rep} of $G$ via $g \cdot \varphi = \rho_2(g) \circ \varphi \circ \varphi_1(g^{-1})$. Moreover, \[ \sum_{g \in G} g \cdot \varphi \in \GHom_G(V_1, V_2) = 0 \] by our \nameref{lec5_key_idea} from \lecture{5} and \nameref{schurs_lemma}. Pick an \gls{rep_iso} $\varphi \in \Hom_k(V_1, V_2)$ and then \[ 0 = \sum_{g \in G} \rho_2(g) \varphi \rho_1(g^{-1}) = \left( \sum_{g \in G} \rho_1(g^{-1}) \rho_2(g) \right) \varphi \] So as $\varphi$ is injective, we're done. \end{proof} \begin{flashcard}[isotypic-component-defn] \begin{definition*}[isotypic component] \glsnoundefn{iso_component}{$W$-isotypic component}{$W$-isotypic-components} \cloze{If $V$ is a \gls{comp_red} \gls{rep} of a group $G$ and $W$ is any \gls{simple} \gls{rep} of $G$, the \emph{$W$-isotypic component} of $V$ is the smallest \gls{subrep} of $V$ containing all \glspl{subrep} of $V$ \gls{rep_iso} to $W$.} \end{definition*} \end{flashcard} \vspace{-1em} This exists since if $(V_i)_{i \in I}$ are \glspl{subrep} of $V$ containing all \glspl{subrep} of $V$ \gls{rep_iso} to $W$ then $\bigcap_{i \in I} V_i$ is another (or we can simply take the vector space sum of all \glspl{subrep} \gls{rep_iso} to $W$). \begin{flashcard}[unique-isotypical-decomp-defn] \begin{definition*}[unique isotypical decomposition] \glsnoundefn{unique_iso_decomp}{unique isotypical decomposition}{unique isotypical decomposition} \glsnoundefn[unique_iso_decomp]{iso_decomp} {isotypical decomposition}{isotypical decompositions} \cloze{ We say $V$ has a \emph{unique isotypical decomposition} if $V$ is the direct sum of its \isocomp{W} as $W$ goes over all \gls{simple} \glspl{rep} of $G$ (up to \glsref[rep_iso]{isomorphism}). } \end{definition*} \end{flashcard} \begin{flashcard}[unique-iso-decomp-existence] \begin{corollary*} If $G$ is a finite abelian group, then every $\CC$-\gls{rep} of $V$ has a \gls{unique_iso_decomp}. \end{corollary*} \begin{proof} \cloze{ For each \glsref[rep_iso]{homomorphism} $\theta_i : G \to \CC^\times$, $i = 1, \ldots, |G|$ (i.e. each \gls{simple} \gls{rep} of $G$) we can define \[ W_i = \{v \in V \mid g \cdot v = \theta_i(g) v ~\forall g \in G\} \] the \isocomp{\theta_i} of $V$. Since $V$ is \gls{comp_red}, $V = \sum_{i = 1}^{|G|} W_i$. We need to show that if $\sum_{i = 1}^{|G|} w_i = 0$ with $w_i \in W_i$ for each $i$, then $w_i = 0$ for each $i$. But \[ \sum_{i = 1}^{|G|} w_i = 0 \implies 0 = g \cdot \sum_{i = 1}^{|G|} w_i = \sum_{i = 1}^{|G|} \theta_i(g) w_i ~\forall g \in G \] Then for each $j$, \[ \sum_{i = 1}^{|G|} \left( \sum_{g \in G} \theta_j(g^{-1}) \theta_i(g) \right) w_i = 0 \] But by \hyperref[lec7_sum_is_zero_lemma]{the previous Lemma}, \[ \LHS = \sum_{g \in G} \theta_j(g^{-1}) \theta_j(g) w_j = |G|w_j \] Thus $w_j = 0$ as required. } \end{proof} \end{flashcard} This proof also works when $\CC$ is replace by any other algebraically closed field with characteristic $0$. You will extend this to all finite groups on \es{2}. \newpage \section{Characters} Summary so far: We want to classify all \glspl{rep} of a given (finite) group $G$. We've seen when $G$ is finite and $\characteristic k = 0$ then every \gls{rep} decomposes as $V \cong \bigoplus_{i = 1}^r n_i V_i$ with $V_1, \ldots, V_r$ \gls{simple} and pairwise non-\gls{rep_iso} and $n_i \ge 0$. Moreover, if $k = \ol{k}$ then $n_i = \dim \GHom_G(V_i, V)$. Next we want to discuss how to classify \gls{irred} ($\CC$-)\glspl{rep} of a finite group and understand how to \emph{compute} the $n_i$ given $V$. We'll do both by character theory. \subsection{Definitions} \begin{flashcard}[char-of-rep-defn] \begin{definition*}[Character] \glspropdefn{char_rep}{character}{\gls{rep}} \glssymboldefn{char_rep}{\chi}{character of a \gls{rep}} \cloze{ Given a \gls{rep} $\rho : G \to \GL(V)$, the \emph{character} of $\rho$ is the function $G \to k$, $\chi = \chi_\rho = \chi_V : G \to k$, $g \mapsto \Trace \rho(g)$. } \end{definition*} \end{flashcard} \vspace{-1em} Since for matrices $\Trace (BA) = \Trace(AB)$, the \gls{char_rep} does not depend on a choice of basis \[ \Trace(PAP^{-1}) = \Trace(AP^{-1} P) = \Trace(A) \] Similarly, \gls{rep_iso} \glspl{rep} have the same \gls{char_rep}. \begin{example*} Let $G = D_6 = \langle s, t : s^2 = t^3 = e, sts = t^{-1} \rangle$, the dihedral group of order $6$. Let $G \to \GL_2(\RR)$ be the action of $G$ by symmetries of a triangle. To compute $\chichar_\rho$ we just need to know the eigenvalues of each matrix $\rho(g)$. Each reflection (element $st^i$) has eigenvalue $1, -1$ so $\chichar(st^i) = 0$ for all $i$. The eigenvalues of the non-trivial rotation must be non-trivial cube roots of $1$ and sum to be a real number. Thus $\chichar(t) = \chichar(t^2) = e^{2\pi i / 3} + e^{4\pi i / 3} = -1$. Also, $\chichar(e) = 2$. \end{example*} \begin{proposition*} Let $(\rho, V)$ be a \gls{rep} of $G$. Then \begin{enumerate}[(i)] \item $\chichar_V(e) = \dim V$ \item $\chichar_V(g) = \chichar_V(hgh^{-1}) ~\forall g, h \in G$ \item If $W$ is another \gls{rep}, then $\chichar_{V \oplus W} = \chichar_V + \chichar_W$ \item If $V$ is unitary then $\chichar_V(g^{-1}) = \ol{\chichar_V(g)} \forall g \in G$ \end{enumerate} \end{proposition*} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item $\chichar(e) = \Trace \id_V = \dim V$ \item $\rho(hgh^{-1}) = \rho(h) \rho(g) \rho(h^{-1})$ thus $\rho(g)$ and $\rho(hgh^{-1})$ are conjugate in $\GL(V)$ so have the same trace. \item Clear \item By choosing a basis we may view $\rho$ as a homomorphism $G \to U(n)$. Then $\rho(g^{-1}) = \rho(g)^{-1} = \ol{\rho(g)}^\top$. So $\Trace \rho(g^{-1}) = \ol{\Trace(\rho(g))}$ since $\Trace$ is transpose invariant. \qedhere \end{enumerate} \end{proof} The \glsref[char_rep]{characters} contain very little data: an element of $k$ for each conjugacy class in $G$. But when $G$ is finite and $k = \CC$, it contains all we need to reconstruct $V$ up to \gls{rep_isom}. \begin{flashcard}[class-function-defn] \begin{definition*}[Class function] \glsnoundefn{cls_fn}{class function}{class functions} \glssymboldefn{cls_fn_space}{space of class functions}{Cg} \cloze{ A function $f : G \to k$ is a \emph{class function} if $f(hgh^{-1}) = f(g) ~\forall g, h \in G$. We'll write $\mathcal{C}_G$ for the $k$-vector space of class functions. Notice that if $O_1, \ldots O_r$ are the conjugacy classes in $G$ then the indicator functions \[ \mathbbm{1}_{O_i} : G \to k, \qquad g \mapsto \begin{cases} 1 & g \in O_i \\ 0 & g \not\in O_i \end{cases} \] form a basis for $\mathcal{C}_G$. So $\dim \mathcal{C}_G = \#\text{conjugacy classes}$. } \end{definition*} \end{flashcard}