%! TEX root = RT.tex % vim: tw=50 % 16/10/2023 11AM \begin{flashcard}[G-invariant-inner-product] \begin{definition*}[$G$-invariant inner product] \glsnoundefn{Ginv_ip}{$G$-invariant inner product}{$G$-invariant inner products} \cloze{ A Hermitian inner product on a \gls{rep} $V$ of $G$ is \cloze{$G$-invariant} if $(gx, gy) = (x, y)$ for all $g \in G$, $x, y \in V$. \fcemph{Equivalently} if $(gx, gx) = (x, x) ~\forall g \in G, x \in V$. } \end{definition*} \end{flashcard} \begin{flashcard}[unitary-iff-G-invariant-inner-product] \begin{proposition*} A \gls{rep} $(\rho, V)$ of $G$ is unitary if and only if \cloze{$V$ has a \Ginvip.} \end{proposition*} \begin{proof} \cloze{ If $(\rho, V)$ is contrary let $e_1, \ldots, e_n$ be a basis with respect to which each $\rho(g) \in U(n)$. Now, \[ \left( \sum_i \lambda_i e_i, \sum_j \mu_j e_j \right) = \sum_i \ol{\lambda_i} \mu_i \] is a \Ginvip\ on $V$. Conversely, if $V$ has a \Ginvip $(\bullet, \bullet)$, we can find an orthonormal basis $v_1, \ldots, v_n$ of $V$ with respect to $(\bullet, \bullet)$. Then \[ \left( \sum_i \lambda_i v_i, \sum_j \mu_j v_j \right) = \sum_i \ol{\lambda_i} \mu_i \qquad \forall \lambda, \mu \in \CC^n \] i.e. $(\bullet, \bullet)$ is the standard inner product with respect to $v_1, \ldots, v_n$, so since it is \glsref[Ginv_ip]{$G$-invariant} each $\rho(g)$ is unitary with respect to this basis. } \end{proof} \end{flashcard} Note \glspl{subrep} of unitary \glspl{rep} are thus unitary since we can restrict a \Ginvip. \begin{flashcard}[unitary-rep-implies-completely-reducible] \begin{theorem*} \cloze{Suppose $(\rho, V)$ is a unitary representation of a group $G$. Then every subrepresentation $W$ of $V$ has a $G$-invariant complement.} Thus $V$ is completely reducible. \end{theorem*} \begin{proof} \cloze{ Since $V$ is unitary it has a $G$-invariant inner product $(\bullet, \bullet)$. If $W$ is a subrepresentation then \[ W^\perp = \{v \in V \mid (v, w) = 0 ~\forall w \in W\} \] is a vector space complement to $W$ in $V$ by standard linear algebra. Moreover, if $g \in G$, $v \in W^\perp$ and $w \in W$ then \[ (gv, w) = (v, g^{-1}w) = 0 \] since $g^{-1} w \in W$, so $gv \in W^\perp$ and $W^\perp$ is a subrepresentation as required. \fcscrap{ The last part follows from lemma proved last time.} } \end{proof} \end{flashcard} \begin{flashcard}[maschkes-thm] \begin{theorem*}[Maschke's Theorem] \refstepcounter{customtheorem} \label{maschkes_thm} \cloze{Let $G$ be a finite group and $(\rho, V)$ is a \gls{rep} of $G$ over $k$, a field of characteristic zero. Suppose $W \le V$ is a \gls{subrep}. Then $W$ has a \Ginv complement in $V$. In particular, $V$ is \gls{comp_red}.} \end{theorem*} \end{flashcard} \refsteplabel[key idea]{lec5_key_idea} \textbf{Key idea:} If $(\rho, V)$ is a \gls{rep} of a finite group $G$ over a field $k$ then for all $v \in V$, \[ \sum_{g \in G} g \cdot v \in V^G = \{v \in V \mid g \cdot v = v ~\forall g \in G\} \le V \] \begin{proof}[Proof of Key idea] If $h \in G$, \[ h \left( \sum_{g \in G} g \cdot v \right) = \sum_{g \in G} (hg) \cdot v = \sum_{g' \in G} g' \cdot v \] since $G \to G$, $g \mapsto hg$ is a permutation of $G$ and $h : V \to V$ is linear. \end{proof} \begin{flashcard}[weyls-unitary-trick] \begin{proposition*}[Weyl's unitary trick] \cloze{If $V$ is a $\CC$-\gls{rep} of a finite group $G$ then $V$ has a \Ginvip. Thus \nameref{maschkes_thm} is true over $\CC$.} \end{proposition*} \begin{proof} \cloze{ Pick any Hermitian inner product $\langle \bullet, \bullet \rangle$ on $V$. Then we can define a new inner product on $V$ via \[ (x, y) = \sum_{g \in G} \langle gx, gy \rangle \] It is easy to see that $(\bullet, \bullet)$ is a Hermitian inner product because $\langle \bullet, \bullet \rangle$ is since, for example, if $a, b \in \CC$ and $x, y, z \in V$ then \begin{align*} (x, ay + bz) &= \sum_{g \in G} \langle gx, g(ay + bz) \rangle \\ &= \sum_{g \in G} \langle gx, a g(y) + bg(z) \rangle \\ &= \sum_{g \in G} (a \langle gx, gy \rangle + b \langle gx, gz \rangle) \\ &= a (x, y) + b(x, z) \end{align*} But now if $h \in G$ and $x, y \in V$, \[ (hx, hy) = \sum_{g \in G} \langle ghx, ghy \rangle = \sum_{g' \in G} \langle g'x, g'y \rangle = (x, y) \] since $g \mapsto gh$ is a permutation of $G$. } \end{proof} \end{flashcard} \begin{remark*} This proof can be phrased as follows: \begin{enumerate}[(i)] \item $\Herm(V) = \{\text{Hermitian sesquilinear forms}\}$ is naturally an $\RR$-vector space. \item $G \to \Aut(\Herm(V))$, $g \cdot (\bullet, \bullet)|_{(x, y)} = (g^{-1} x, g^{-1} y)$ defines an $\RR$-linear \gls{rep} of $G$. \item All $\RR^{>0}$-linear combinations of positive definite elements of $\Herm(V)$ are positive definite. \item The \nameref{lec5_key_idea} transforms an inner product into a \glsref[Ginv_ip]{$G$-invariant} one. \end{enumerate} It follows that studying $\CC$-\glspl{rep} of a finite group is the same as studying unitary \glspl{rep} of the group. \end{remark*} \begin{flashcard}[finite-subgp-of-GLnC-conj-to-subgp-of-Un] \begin{corollary*} Every finite subgroup of $\GL_n(\CC)$ is conjugate \cloze{to a subgroup of $U(n)$.} \end{corollary*} \begin{proof} \cloze{If $G \le \GL_n(\CC)$ then the inclusion map $\rho : G \to \GL_n(\CC)$ is a \gls{rep}. By the unitary trick, there exists a basis for $\CC^n$ with respect to which each $\rho(g) \in U(n)$, i.e. $\exists P \in \GL_n(\CC)$ such that $\forall g \in G$, $P \rho(g) P^{-1} \in U(n)$.} \end{proof} \end{flashcard} We now generalise to all $\characteristic 0$ fields. \begin{proof}[Proof of \nameref{maschkes_thm}] Idea: if $\pi : V \to V$ is a projection, i.e. $\pi^2 = \pi$, then $V = \Im \pi \oplus \ker \pi$ as vector spaces. If $\pi$ is $G$-linear then $\ker \pi$ and $\Im \pi$ are \glspl{subrep}. So $\Im \pi$ has a \Ginv\ complement. So we pick a projection onto $W$ and average it. Let $\pi : V \to V$ be any $k$-linear projection onto $W$ (so $\pi(w) = w$ for all $w \in W$ and $\Im \pi = W$). Recall that $\Hom_k(V, V)$ is a \gls{rep} of $G$ via $g \cdot \varphi = g \circ \varphi \circ g^{-1}$. Let $\pi^G = \frac{1}{|G|} \sum_{g \in G} (g \circ \pi) \in \Hom_G(V, V)$ by the \nameref{lec5_key_idea}. Moreover, $\Im \pi^G \le W$ since $g \circ \pi g^{-1}(v) \in W$ for all $v \in V, g \in G$ and \[ \pi^G(v) = \sum_{g \in G} \frac{1}{|G|} g \circ \pi \circ g^{-1}(v) \] and if $w \in W$ then \[ \pi^G(w) = \frac{1}{|G|} \sum_{g \in G} g \circ \pi \circ g^{-1}(w) = \frac{1}{|G|} \sum_{g \in G} g \circ g^{-1} (w) = w \] since $g^{-1}(w) \in W ~\forall g \in G, w \in W$. So $\pi^G$ is a $G$-invariant linear projection onto $W$ and $\ker \pi$ is a \Ginv\ complement to $W$ in $V$. \end{proof} \begin{remark*} \refstepcounter{customremark} \label{lecture5_last_remark} \phantom{} \begin{enumerate}[(1)] \item We can explicitly compute $\pi^G$ and $\ker \pi^G$ via formula \[ \pi^G = \frac{1}{|G|} \sum_{g \in G} g \cdot \pi \] \item Notice we only used $\characteristic(k) = 0$ when we divided by $|G|$. So in fact the result holds whenever $\characteristic(k) \nmid |G|$. \item As an extension of our \nameref{lec5_key_idea}, for any $G$-\gls{rep} $V$ (and $\characteristic k \nmid |G|$), \refsteplabel[projection]{UG_projection} \[ \pi : v \mapsto \frac{1}{|G|} \sum_{g \in G} gv \] is a projection in $\Hom_G(V, V)$ onto $V^G$. Notice $\dim V^G = \Trace \pi = \frac{1}{|G|} \sum_{g \in G} \Trace(g)$ since $\Trace$ is linear. \end{enumerate} \end{remark*}