%! TEX root = RT.tex % vim: tw=50 % 13/10/2023 11AM \newpage \section{Complete Reducibility and Maschke's Theorem} \textbf{Question:} What can a \gls{rep} $V$ of a group $G$ be decomposed as a direct sum of \gls{simple} \glspl{subrep}? \begin{example*} \phantom{} \begin{enumerate}[(1)] \item If $G = \{e\}$ the answer is always as seen in \lecture{1} since a \gls{simple} \gls{subrep} is precisely a 1 dimensional subspace. \item If $G = C_2$ and $V = \RR^2$, \[ \rho(-1) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \] we've seen that the \gls{proper_subrep} \glspl{subrep} of $V$ are \[ \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle \] and \[ \RR^2 = \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle \oplus \left\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle \] is the only such decomposition. \item If $G = (\ZZ, +)$ and $\rho : G \to \GL_2(k)$ is determined by \[ \rho(1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] then there is precisely one \gls{proper_subrep} \gls{subrep} \[ \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle \] as any such must be spanned by an eigenvector. So this cannot be decomposed in this way. \end{enumerate} \end{example*} \begin{flashcard}[direct-sum-reps-defn] \begin{definition*}[direct sum of representations] \glsnoundefn{rep_dir_sum}{direct sum}{direct sums} \glssymboldefn{rep_dir_sum}{bigoplus}{direct sum of representations} \cloze{ We say a \gls{rep} $V$ is a \emph{direct sum of $(V_i)_{i = 1}^k$} if each $V_i$ is a \gls{subrep} of $V$ and $V = \bigoplus_{i = 1}^k V_i$ as vector spaces (recall direct sum notation from Linear Algebra). Given a family of \glspl{rep} $(\rho_i, V_i)_{i = 1}^k$ of $G$, we may define the (external) direct sum to be the \gls{rep} of $G$ on the vector space \[ V \defeq \bigoplus_{i = 1}^k V_i \defeq \{(v_i)_{i = 1}^k \mid v_i \in V_i\} \] with pointwise operations via \[ \rho(g)((v_i)) = (\rho_i(g) v_i) \] We write \[ (\rho, V) \defeq \bigoplus_{i = 1}^k (\rho_i, V_i) = \bigoplus_{i = 1}^k \rho_i = \bigoplus_{i = 1}^k V_i \] } \end{definition*} \end{flashcard} \subsubsection*{Examples} \begin{enumerate}[(1)] \item Suppose $G$ acts on a finite set $X$ and $X = X_1 \cup X_2$ with $X_1 \cap X_2 = \emptyset$ and $X_1$, $X_2$ both $G$ stable ($g \cdot x \in X_i$ if $x \in X_i$, $g \in G$). Then $kX \simeq k X_i \oplus k X_2$ under \[ f \mapsto (f|_{X_1}, f|_{X_2}) \] Internally \[ kX = \{f \mid f(x) = 0 ~\forall x \in X_2\} \oplus \{f \mid f(x) = 0 ~\forall x \in X_1\} \] More generally if the $G$-action decomposes into orbit $X = \bigcup_{i = 1}^r O_i$, then \[ kX = \bigoplus_{i = 1}^r \mathbbm{1}_{O_i} (kX) \simeq \bigoplus_{i = 1}^r k O_i \] where $\mathbbm{1}_{O_i} : kX \to kX$ given by \[ \mathbbm{1}_{O_i} (f)(x) = \begin{cases} f(x) & x \in O_i \\ 0 & \text{otherwise} \end{cases} \] \item If $G$ acts transitively on a finite set $X$ then \[ U \defeq \left\{ f \in kX ~\Bigg|~ \sum_{x \in X} f(x) = 0 \right\} \qquad \text{and} \qquad W \defeq \{ f \in kX \mid \text{$f$ is constant}\} \] are \glspl{subrep} if $|X| > 1$. \begin{proof} If $f \in U$ and $g \in G$ \[ \sum_{x \in X} (g \cdot f) (x) = \sum_{x \in X} f(g^{-1} x) = \sum_{x \in X} f(x) = 0 \] since $x \mapsto g^{-1} x$ defines a permutation of $X$. So $g \cdot f \in U$ and $U$ is \Ginv. Similarly if $f \in W$ then there exists $\lambda \in k$ such that for all $x \in X$, $f(x) = \lambda$ and $(g \cdot f) (x) = f(g^{-1} x) = \lambda$. If $\characteristic k = 0$ then $kX = U \oplus W$ is a \gls{rep_dir_sum} of \glspl{rep}. What happens if $\characteristic k = p > 0$? \end{proof} \end{enumerate} \begin{proposition*} Suppose $\rho : G \to \GL(V)$ is a \gls{rep} and $V = U \oplus W$ as vector spaces. Then the following are equivalent: \begin{enumerate}[(i)] \item $V = U \oplus W$ as \glspl{rep} \item There is a basis $v_1, \ldots, v_d$ of $V$ such that $v_1, \ldots, v_r$ is a basis of $U$ and $v_{r + 1}, \ldots, v_d$ is a basis of $W$ and the corresponding matrices $\rho(g)$ are block diagonal \begin{center} \includegraphics[width=0.6\linewidth] {images/acfc851869b411ee.png} \end{center} \item For every basis $v_1, \ldots, v_d$ of $V$ such that $v_1, \ldots, v_r$ is a basis of $U$ and $v_{r + 1}, \ldots, v_d$ is a basis of $W$, the corresponding matrices $\rho(g)$ are all block diagonal as in (ii). \end{enumerate} \end{proposition*} \begin{proof} Think about it! \end{proof} \begin{warning*} $\rho : C_2 \to \GL_2(\RR)$, $\rho(-1) = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$ defines a \gls{rep} of $C_2$ (check). The \gls{rep} on $\RR^2$ decomposes as a \gls{rep_dir_sum} of \glspl{subrep} $\langle e_1 \rangle$ and $\langle e_1 + e_2 \rangle$ even though $\rho(-1)$ is not diagonal. \end{warning*} \begin{flashcard}[completely-reducible-defn] \begin{definition*}[completely reducible] \glsdefn{comp_red}{completely reducible}{asdf} \cloze{We say a \gls{rep} $V$ of a group $G$ is \emph{completely reducible} if \[ V \simeq \bigoplus_{i = 1}^r V_i \] for some \gls{irred} \gls{rep} $V_i$.} \end{definition*} \end{flashcard} \vspace{-1em} We've seen that $(\ZZ, +)$ has \glspl{rep} that are not \gls{comp_red}, given by \[ \rho(1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] \begin{flashcard}[completely-reducible-lemma] \begin{lemma*} Suppose $(\rho, V)$ is a \gls{rep} such \cloze{that for every pair of \Ginv{} subspaces $W_1, W_2 \le V$ such that $W_1 \le W_2$, there is a \Ginv\ complement to $W_1$ in $W_2$.} Then $V$ is \gls{comp_red}. \end{lemma*} \begin{proof} \cloze{ By induction on $\dim V$. If $V = 0$ or $V$ is \gls{irred} the result is clear. Otherwise $V$ has a proper \Ginv\ subspace $W$. Then by assumption $W$ has a \Ginv\ complement $U$ in $V$ so $V = U \oplus W$ as \glspl{rep}. Now $\dim U, \dim W < \dim V$ and $U$ and $W$ inherit the condition on $V$. So by induction hypothesis, \[ U \cong \bigoplus_{i = 1}^r U_i \qquad \text{and} \qquad W \cong \bigoplus_{j = 1}^s W_j \] for some \gls{simple} \glspl{rep} $U_1, \ldots, U_r$ and $W_1, \ldots, W_s$. Then \[ V \simeq \bigoplus_{i = 1}^r U_i \oplus \bigoplus_{j = 1}^s W_j \] as required. } \end{proof} \end{flashcard} Recall, if $V$ is a $\CC$-vector space then a \emph{Hermitian inner product} is a positive definite Hermitian sesquilinear form, i.e. $(\bullet, \bullet) : V \times V \to \CC$ such that \begin{enumerate}[(i)] \item Sesquilinear: \[ (ax + by, z) = \ol{a}(x, z) + \ol{b}(y, z) \qquad \forall x, y, z \in V, a, b \in \CC \] \[ (x, ay + bz) = a(x, y) + b(x, z) \qquad \forall x, y, z \in V, a, b \in \CC \] \item $(x, y) = \ol{(y, x)}$ for all $x, y \in V$ (Hermitian) \item $(x, x) > 0 ~\forall x \in V \setminus \{0\}$ (positive definite) \end{enumerate} The standard inner product on $\CC^n$ is given by \[ (x, y) = \sum_{i = 1}^n \ol{x_i} y_i \] Recall the \emph{unitary group} $U(n)$ is the subgroup of $\GL_n(\CC)$ given by \begin{align*} U(n) &= \{A \in \GL_n(\CC) \mid \ol{A^\top} A = I\} \\ &= \{A \in \GL_n(\CC) \mid (Ax, Ay) = (x, y) ~\forall x, y \in \CC^n\} \end{align*} \begin{flashcard}[unitary-rep-defn] \begin{definition*}[unitary representation] \glsadjdefn{uni_rep}{unitary}{\gls{rep}} \cloze{ A $\CC$ \gls{rep} of a group $G$ is \emph{unitary} if there exists a basis $e_1, \ldots, e_n$ of $V$ so that the corresponding matrix \gls{rep} $\rho : G \to \GL_n(\CC)$ has image contained in $U(n)$. } \end{definition*} \end{flashcard}