%! TEX root = RT.tex % vim: tw=50 % 11/10/2023 10AM \begin{flashcard}[sub-representation-defn] \begin{definition*}[Subrepresentation] \glsnoundefn{subrep}{subrepresentation}{subrepresentations} \glsadjdefn{Ginv}{$G$-invariant}{vector subspace} \cloze{ Suppose $\rho : G \to \GL(V)$ is a \gls{rep} and $W \le V$ is a $k$-linear subspace. Then we say $W$ is \emph{$G$-invariant} if $\rho(g)(W) \subset W$ for all $g \in G$. In this case we can define a \gls{rep} $(\rho_W, W)$ via \[ \rho_W(g)(w) = \rho(g)(w) \qquad \forall g \in G, w \in W .\] We call $(\rho_W, W)$ a \emph{subrepresentation} of $W$. } \end{definition*} \end{flashcard} \begin{flashcard}[proper-subrep] \begin{definition*}[Proper Subrepresentation] \glsadjdefn{proper_subrep}{proper}{subrepresentation} \cloze{ If $W \neq 0$ and $W \neq V$ we say $W$ is a \emph{proper} \gls{subrep}. } \end{definition*} \end{flashcard} \begin{flashcard}[irreducible-rep] \begin{definition*}[Irreducible Representation] \glsadjdefn{irred}{irreducible}{\gls{rep}} \glsadjdefn[irred]{simple}{simple}{\gls{rep}} \cloze{ We say $V \neq 0$ is \emph{irreducible} or \emph{simple} if $V$ has no \gls{proper_subrep} \glspl{subrep}. } \end{definition*} \end{flashcard} \subsubsection*{Examples} \begin{enumerate}[(1)] \item Any \repdim{1} \gls{rep} of any group is \gls{irred}. \item If $G = C_2$, $\rho : G \to \GL_2(k)$, with \[ \rho(-1) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \] ($\characteristic k \neq 2$). Then $(\rho, k^2)$ has exactly 2 proper \glspl{subrep}, namely \[ \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle \] \begin{proof} It is easy to see that two given \glspl{subrep} are \Ginv, since the vectors are $\rho(-1)$-eigenvectors. Conversely, any \gls{proper_subrep} \gls{subrep} must have \gls{rep_dim} 1, so is spanned by an eigenvector of $\rho(-1)$ and the eigenspaces of $\rho(-1)$ are those described above. \end{proof} \item If $G = C_2$ then any \gls{simple} \gls{rep} of $G$ has \gls{rep_dim} $1$. \begin{proof} Suppose $\rho : G \to \GL(V)$ is an \gls{irred} \gls{rep} of $G$. The minimal polynomial of $\rho(-1)$ divides $X^2 - 1 = (X - 1)(X + 1)$ since $\rho(-1)^2 = \id_V$. So it has a linear factor and $\rho(-1)$ has a nonzero eigenvector $v$. Then $\rho(-1) \langle v \rangle \subseteq \langle v \rangle$ but also $\rho(1) \langle v \rangle \subseteq \langle v \rangle$. So $\langle v \rangle$ is a \Ginv\ subspace of $V$. As $V$ is \gls{irred} and $\langle v \rangle \neq 0$, $\langle V \rangle = V$ has dimension 1. \end{proof} Note we see that if $\characteristic k \neq 2$ there are precisely 2 \gls{simple} \glspl{rep} of $C_2$ up to \gls{rep_isom} and only 1 if $\characteristic k = 2$. \item If $G = D_6$, then every complex \gls{irred} \gls{rep} has \gls{rep_deg} $\le 2$. \begin{proof} Let $\rho : G \to \GL(V)$ be an \gls{irred} \gls{rep} of $G$. Let $r$ be a non-trivial rotation in $G$ and $s$ a reflection in $G$ so $r^3 = e = s^2$, $srs = r^{-1}$ and $\{r, s\}$ generate $G$. Since $\rho(r)^3 = \id_V$, the minimal polynomial of $\rho(r)$ divides $X^3 - 1$, so $\rho(r)$ has an eigenvector $v$ with eigenvalue $\lambda$ such that $\lambda^3 = 1$. Consider $W \defeq \langle v, \rho(s) v \rangle \le V$, so $\dim W \le 2$. Now $\rho(s)\rho(s)v = \rho(s^2)v = v$, and $\rho(r)\rho(s)v = \rho(s)\rho(r)^{-1}v = \lambda^{-1} \rho(s)v$, so $\rho(s)W \le W$ and $\rho(R)W \le W$. Since $r$ and $s$ generate $G$, it follows $W$ is a \Ginv\ subspace of $V$. So if $V$ is \gls{irred}, must have $W = V$, so $\dim V \le 2$ as required. \end{proof} \textbf{Exercise:} Show that there are precisely 3 \gls{irred} \glspl{rep} of $D_6$ up to \gls{rep_isom}: two of \gls{rep_deg} 1 and one of \gls{rep_deg} 2. (Hint: consider proof above and split into cases for each value of $\lambda$). \end{enumerate} \begin{flashcard}[quotient-rep] \begin{definition*}[Quotient Representation] \cloze{ If $(\rho, V)$ is a \gls{rep} of $G$ and $W \le V$ is a \Ginv\ \gls{subrep} then we can define a \emph{quotient representation} $(\rho_{V / W}, V / W)$ via \[ \rho_{V / W}(g)(v + W) = \rho(g)(v) + W .\] (This is well-defined since $\rho(g)(W) \subset W \forall g \in G$ means that the choice of coset representative doesn't matter). } \end{definition*} \end{flashcard} \vspace{-1em} We're going to start dropping the $\rho$ now where it doesn't cause confusion. \begin{flashcard}[G-linear-map] \begin{definition*}[$G$-linear map] \glsadjdefn{Glin}{$G$-linear}{linear map} \glssymboldefn{GHom}{HomG}{HomG} \cloze{ If $(\rho, V)$ and $(\sigma, W)$ are two \glspl{rep} of $G$ we say a $k$-linear map $\varphi : V \to W$ is \emph{$G$-linear} if $\varphi \circ g = g \circ \varphi$ for all $g \in G$, i.e. $\varphi \circ \rho(g) = \sigma(g) \circ \varphi$. We write \[ \Hom_G(V, W) = \{\varphi \in \Hom_k(V, W) \mid \text{$\varphi$ is $G$-linear}\} \] a $k$-vector subspace of $\Hom_k(V, W)$. } \end{definition*} \end{flashcard} \begin{enumerate}[(1)] \item $\varphi \in \Hom_k(V, W)$ is an \gls{itt_map} if and only if $\varphi$ is a bijection and $\varphi \in \Hom_G(V, W)$, since $\varphi \circ \rho(g) = \sigma(g) \circ \varphi \iff \varphi \circ \rho(g) \circ \varphi^{-1} = \sigma(g)$. \item If $W \le V$ is a $G$-\gls{subrep} then the natural inclusion map \[ \iota : W \to V, w \mapsto w \in \GHom_G(W, V) \] and the natural projection map \[ \pi : V \to V / W, v \mapsto v + W \in \GHom_G(V, V / W) .\] \item Recall that $\Hom_k(V, W)$ is a \gls{rep} of $G$ via $g \cdot \varphi = g \circ \varphi \circ g^{-1}$ for $g \in G$, $\varphi \in \Hom_k(V, W)$ and $\varphi \in \GHom_G(V, W)$ if and only if $g \cdot \varphi = \varphi$ for all $g \in G$. \begin{lemma*} \vspace{0.5em} If $U$, $V$ and $W$ are \glspl{rep} of a group $G$ with $\varphi_1 \in \Hom_k(V, W)$, $\varphi_2 \in \Hom_k(U, V)$ then \[ g \cdot (\varphi_1 \circ \varphi_2) = (g \circ \varphi_1) \circ (g \circ \varphi_2) \forall g \in G .\] In particular, if: \begin{itemize} \item $\varphi_1 \in \GHom_G(V, W)$ then $g \cdot (\varphi_1 \circ \varphi_2) = \varphi_1 \circ (g \cdot \varphi_2)$ for all $g \in G$ \item $\varphi_2 \in \GHom_G(U, V)$ then $g \cdot (\varphi_1 \circ \varphi_2) = (g \cdot \varphi_1) \circ \varphi_2$ for all $g \in G$ \item $\varphi_1 \in \GHom_G(V, W)$ and $\varphi_2 \in \GHom_G(U, V)$ \end{itemize} Then $\varphi_1 \circ \varphi_2 \in \GHom_G(U, W)$. \end{lemma*} \begin{proof} With the notation in the statement, \[ (g \cdot \varphi_1) \circ (g \circ \varphi_2) = (g \circ \varphi_1 \circ g^{-1}) \circ (g \circ \varphi_2 \circ g^{-1}) = g \circ (\varphi_1 \circ \varphi_2) \circ g^{-1} = g \cdot (\varphi_1 \circ \varphi_2) \] Everything else follows immediately. \end{proof} \end{enumerate} \begin{flashcard}[first-iso-thm-for-reps] \begin{lemma*}[First Isomorphism for Representations] \refstepcounter{customlemma} \label{reps_first_iso} \cloze{ Suppose $V$ and $W$ are two \glspl{rep} of $G$ and $\varphi \in \Hom_G(V, W)$. Then \begin{enumerate}[(i)] \item $\ker \varphi$ is a \gls{subrep} of $V$; \item $\Image \varphi$ is a \gls{subrep} of $W$; \item the linear isomorphism $\ol{\varphi} : V / \ker \varphi \to \Image \varphi$ given by the first isomorphism theorem for vector spaces is an \gls{itt_map}. Thus $V / \ker \varphi$ and $\Image \varphi$ are \gls{rep_iso} as \glspl{rep}. \end{enumerate} } \end{lemma*} \begin{proof} \cloze{ \begin{enumerate}[(i)] \item If $v \in \ker \varphi$ and $g \in G$ then $\varphi(g \cdot v) = g \cdot \varphi(v) = g \cdot 0 = 0$. So $g \cdot v \in \ker \varphi$. \item If $w = \varphi(v) \in \Image \varphi$ and $g \in G$ then $g \cdot w = g \cdot \varphi(v) = \varphi(g \cdot v) \in \Image \varphi$. \item We know $\ol{\varphi}$ is given by the formula $\ol{\varphi}(v + \ker \varphi) = \varphi(v)$. Then $g \circ \ol{\varphi}(v + \ker \varphi) = g \cdot \varphi(v) = \varphi(g \cdot v) = \ol{\varphi}(g(v + \ker\varphi))$. \end{enumerate} } \end{proof} \end{flashcard} \begin{proposition*} Suppose $\rho : G \to \GL(V)$ and $W \le V$ is a subspace. Then the following are equivalent \begin{enumerate}[(i)] \item $W$ is a \gls{subrep} of $V$. \item There exists a basis of $V$ such that $v_1, \ldots, v_r$ is a basis of $W$ and each $\rho(g)$ with respect to this basis is block upper triangular: \begin{center} \includegraphics[width=0.6\linewidth] {images/14721604682511ee.png} \end{center} \item For every basis $v_1, \ldots, v_d$ of $V$ such that $v_1, \ldots, v_r$ is a basis of $W$ each $\varphi(g)$ with respect to the basis is block upper triangular as in (ii). \end{enumerate} \end{proposition*} \begin{proof} Linear Algebra Example Sheet last year. \end{proof}