%! TEX root = RT.tex % vim: tw=50 % 27/11/2023 11AM \subsection{The character table of $B$} As a warm-up we compute the \gls{char_table} of \[ B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} ~\bigg|~ a, d \in \FF_q^\times, b \in \FF_q \right\} \le G ,\] a group of order $(q - 1)^2 q$. Recall \[ N = \left\{ \begin{pmatrix} 1 & b \\ 0 & b \end{pmatrix} ~\bigg|~ b \in \FF_q \right\} \normalsub B \] and \begin{align*} B / N &\simeq T \simeq \FF_q^\times \FF_q^\times \\ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} N &\to \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \end{align*} The conjugacy classes in $B$ are \begin{center} \begin{tabular}{c|c|c|c} Rep & $C_B$ & size of class & \#classes \\ \hline $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ & $B$ & $1$ & $q - 1$ \\ $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ & $ZN$ & $q - 1$ & $q - 1$ \\ $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ & $T$ & $q$ & $(q - 1)(q - 2)$ \end{tabular} \end{center} Moreover if $\Theta_q : \{\text{\glspl{rep} $\FF_q^\times \to \CC^\times$}\}$ then $\Theta_q$ is a cyclic group of order $q - 1$ under pointwise operations since $\FF_q^\times \simeq C_{q - 1}$ and for each pair $\theta, \phi \in \Theta_q$ we can define a \repdim{1} \gls{rep} of $B$ (factoring through $B / N$) given by \[ \chichar_{\theta, \phi} \left( \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right) = \theta(a) \phi(d) \] giving $(q - 1)^2$ \repdim{1} \glspl{rep}. We will build the remaining \gls{irred} \glspl{char_rep} of $B$ by \gls{induction} from $ZN$. \begin{align*} ZN &\simeq \FF_q^\times \times (\FF_q, +) \\ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} &\mapsto (a, a^{-1} b) \end{align*} so given a \repdim{1} \gls{rep} $\gamma : (\FF_q, +) \to \CC^\times$ and $\theta \in \Theta_q$, we can define a \repdim{1} \gls{rep} of $ZN$ \begin{align*} \rho_{\theta, \gamma} : ZN &\to \CC^\times \\ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} &\mapsto \theta(a) \gamma(a^{-1} b) \end{align*} Now $ZN \normalsub B$, so by \nameref{mack_irred_crit}, \[ \text{$\Ind_{ZN}^B \rho_{\theta, \gamma}$ is \gls{irred}} \iff \leftgrep{}^g \rho_{\theta, \gamma} \neq \rho_{\theta, \gamma} \] for all $gZN \in B / ZN \setminus ZN / ZN$. Since \[ \left\{ t_\lambda = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} ~\bigg|~ \lambda \in \FF_q^\times \right\} \] is a coset representative for $B / ZN$ and \begin{align*} \leftgrep{}^{t_\lambda} \rho_{\theta, \gamma} \left( \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \right) &= \rho_{\theta, \gamma} \left( \begin{pmatrix} 1 & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \right) \\ &= \rho_{\theta, \gamma} \left( \begin{pmatrix} a & \lambda b \\ 0 & a \end{pmatrix} \right) \\ &= \theta(a) \gamma(a^{-1} \lambda b) \end{align*} We see that \begin{align*} \leftgrep{}^{t_\lambda} \rho_{\theta, \gamma} = \rho_{\theta, \gamma} &\iff \gamma(\lambda b) = \gamma(b) &&\forall b \in (\FF_q, +) \\ &\iff \gamma((\lambda - 1) b) = 1 &&\forall b \in \FF_q \\ &\iff \gamma = \indicator{\FF_q} \text{ or } \lambda = 1 \end{align*} So $\Ind_{ZN}^B \rho_{\theta, \gamma}$ is \gls{irred} if and only if $\gamma \neq \indicator{\FF_q}$. Now since \[ (\Ind_{ZN}^B) = \sum_{[g]_{ZN} \subseteq [b]_B} \frac{|C_B(b)|}{|C_{ZN}(g)|} \chichar(g) .\] We can compute \begin{align*} (\Ind_{ZN}^B \rho_{\theta, \gamma}) \left( \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right) &= \frac{|B|}{|ZN|} \rho_{\theta, \gamma} \left( \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right) = (q - 1)\theta(\lambda) \\ (\Ind_{ZN}^B \rho_{\theta, \gamma}) \left( \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \right) &= \sum_{b \in \FF_q^\times} \frac{|BN|}{|BN|} \rho_{\theta, \gamma} \left( \begin{pmatrix} \lambda & b \\ 0 & \lambda \end{pmatrix} \right) \\ &= \theta(\lambda) \left( \left( \sum_{b \in \FF_q} \gamma(\lambda^{-1} b) \right) - 1 \right) \\ &= \theta(\lambda) (q \langle \gamma, \indicator{\FF_q} \rangle_{(\FF_q, +)} - 1) \\ &= \begin{cases} -\theta(\lambda) & \gamma \neq \FF_q \\ (q - 1)\theta(\lambda) & \gamma = \indicator{\FF_q} \end{cases} \\ \Ind_{ZN}^B &= \left( \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \right) &= 0 \qquad (\lambda \neq \mu) \end{align*} Let $\mu_\theta \defeq \Ind_{ZN}^B \rho_{\theta, \gamma}$ for $\gamma \neq \indicator{\FF_q}$, noting this does not depend on the choice of $\gamma$. Then each $\mu_\theta$ is \gls{irred} by earlier calculation and we have $q - 1$ \gls{irred} \glspl{rep} of $B$ all of degree $q - 1$. Thus the \gls{char_table} of $B$ is \begin{center} \begin{tabular}{c|c|c|c|c} & $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ & $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ & $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ \\ \hline $\chichar_{\theta, \phi}$ & $\theta(\lambda) \phi(\lambda)$ & $\theta(\lambda) \phi(\lambda)$ & $\theta(\lambda)\phi(\mu)$ & $\theta, \phi \in \Theta_q$ \\ \hline $\mu_\theta$ & $(q - 1)\theta(\lambda)$ & $-\theta(\lambda)$ & $0$ & $\theta \in \Theta_q$ \end{tabular} \end{center} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item The $0$ in the bottom right corner appears in $(q - 1)$ rows and $(q - 1)(q - 2)$ columns. They are all forced to be $0$ by a Lemma from \cref{sub7_4}, since order of the conjugacy class is $q$ and the dimension of an \gls{irred} \gls{rep} are coprime and these elements don't act by scalars since the \glspl{rep} are \gls{ff_rep} and the elements are not in the centre. \item \[ B = Z \times \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} ~\bigg|~ a \in \FF_q^\times, b \in \FF_q \right\} \] and the second factor is a \gls{frob_gp} group, so \es[10]{3} tells us that \glspl{char_rep} of the second factor arise essentially as we have constructed them. \end{enumerate} \end{remark*} \subsection{The character table of $G$} As $\det : G \to \FF_q^\times$ is a surjective group homomorphism, for each $\theta \in \Theta_q$, $\theta \circ \det : G \to \CC^\times$ is a distinct \repdim{1} \gls{rep} of $G$. We get $q - 1$ in all. Next we'll do induction from $B$. Define \[ s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in G ,\] and note that \[ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} b & a + b\beta \\ d & \beta d \end{pmatrix} \] These elements are all disinct. Hence \[ |BsN| = q|B| = |G \setminus B| \] ($G / B$ has order $q + 1$). Thus $BsN = BsB$ and $G = B \ci BsB$ (Bruhat decomposition) and $B \leftquot G / B = \{B, BsB\}$. By the proof of \nameref{mack_irred_crit}, \[ \langle \Ind_B^G \chichar, \Ind_B^G \chichar \rangle_G = \langle \chichar, \chichar \rangle_B + \langle \Res_{B \cap \leftgrep{}^s B}^B \chichar, \Res_{B \cap \leftgrep{}^s B}^{\leftgrep{}^s B} \leftgrep{}^s \chichar \rangle_{B \cap \leftgrep{}^s B} \] Now \[ s \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} s^{-1} = \begin{pmatrix} d & 0 \\ b & a \end{pmatrix} \] So $B \cap \leftgrep^{s} B = T$ and \[ \Gip\langle \Ind_B^G \chichar, \Ind_B^G \chichar \rangle_G = \langle \chichar, \chichar \rangle_B + \langle \chichar|_T, \leftgrep{}^s \chichar|_T \rangle_T \] where \[ (\leftgrep{}^s \chichar) \left( \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \right) = \chichar \left( \begin{pmatrix} d & 0 \\ 0 & a \end{pmatrix} \right) \] Thus $W_{\theta, \gamma} \defeq \Ind_B^G \chichar_{\theta, \phi}$ is \gls{irred} if $\theta \neq \phi \in \Theta_q$. These are called \emph{principal series representations}. We can also compute $W_{\theta, \theta}$ has $2$ distinct \gls{irred} summands: \[ \langle \Ind_B^G \mu_\theta, \Ind_B^G \mu_\theta \rangle = 1 + \frac{1}{|T|} \sum_{\lambda \in \FF_q^\times} |(q - 1) \theta(\lambda)|^2 = 1 + \frac{(q - 1)^3}{(q - 1)^2} = q .\] For any \gls{char_rep} $\chichar$ of $B$, \begin{align*} (\Ind_B^G \chichar)(g) &= \sum_{[b]_B \subseteq [g]_G} \frac{|C_G(g)|}{|C_B(b)|} \chichar(b) \\ (\Ind_B^G \chichar) \left( \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right) &= (q + 1) \chichar \left( \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right) \\ (\Ind_B^G \chichar) \left( \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \right) &= \chichar \left( \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \right) \\ (\Ind_B^G \chichar) \left( \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \right) &= \chichar \left( \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \right) + \chichar \left( \begin{pmatrix} \mu & 0 \\ 0 & \lambda \end{pmatrix} \right) \\ (\Ind_B^G \chichar) \left( \begin{pmatrix} \lambda & \eps \mu \\ \mu & \lambda \end{pmatrix} \right) &= 0 \end{align*} Notice $W_{\theta, \phi} \simeq W_{\phi, \theta}$ so so get ${q - 1 \choose 2}$ principal series representations. Also, $W_{\theta, \theta} = \chichar_\theta \tensrepprod W_{\indicator{}, \indicator{}}$ and \[ W_{\indicator{}, \indicator{}} = \Ind_B^G \indicator{} = \CC (G / B) \] is a permutation \gls{rep}. Thus $W_{\indicator{}, \indicator{}} = \CC \oplus V_1$ with $V_{\indicator{}}$ an (explicit) \gls{irred} \gls{rep} of degree $q$ (the \emph{Steinberg representation}) and $W_{\theta, \theta} = \chichar_\theta \oplus V_\theta$ where $V_\theta = \theta \tensrepprod V_{\indicator{}}$ (a twisted Steinbery representation). We've explicitly constructed $(q - 1) + {q - 1 \choose 2} + (q - 1)$ \gls{irred} \glspl{rep}. We have ${q \choose 2}$ \gls{irred} \glspl{rep} to go. It will turn out that they are indexed by \gls{irred} \glspl{rep} of $K$ such that $\varphi \neq \varphi^q$ up to $\varphi \leftrightarrow \varphi^q$. We won't explicitly construct these \glspl{rep}, just their \glsref[char_rep]{characters}.