%! TEX root = RT.tex % vim: tw=50 % 22/11/2023 10AM \begin{proof} \phantom{} \begin{enumerate}[(i)] \item Every unitary matrix has an orthonormal basis of eigenvectors. That is, for $A \in \SU(2)$, there exists $P \in \U(2)$ such that $P^{-1} AP \in T$. Then if $Q = \frac{1}{\sqrt{\det P}} P \in \SU(2)$, $Q^{-1} AQ = P^{-1} AP \in T$, i.e. $[A]_{\SU(2)} \cap T \neq \emptyset$. \item If $A= \pm I$ the claim is clear. Otherwise \begin{align*} [A]_{\SU(2)} &= [t]_{\SU(2)} &&\text{for some $t \in T$} \\ &= \{gtg^{-1} \st g \in \SU(2)\} \end{align*} All elements of $gtg^{-1}$ have the same eigenvalues as $t$. So if $t' = gtg^{-1} \in T$ then $t' \in n\{t^{\pm 1}\}$, i.e. $[A]_{\SU(2)} \cap T \subseteq \{t^{\pm 1}\}$. But if \[ s = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \SU(2) \] then $sts^{-1} = t^{-1}$. \item $[A]_{\SU(2)} \mapsto \half \Trace A$ is well-defined and injective since conjugate matrices have the same trace and if $\half \Trace A = \half \Trace B$ for $A, B \in \SU(2)$, since $\det A = \det B = 1$, then $A$ and $B$ have the same characteristic polynomial and hence the same eigenvalues, so by (ii) they are conjugate. Moreover \[ \half \Trace \begin{pmatrix} e^{-i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} = \cos \theta \] so the image of our map is $[-1, 1)$. \qedhere \end{enumerate} \end{proof} \begin{corollary*} A (continuous) class function $f : \SU(2) \to \CC$ is determined by its restriction to $T$ and $f|_T$ is even, i.e. \[ f \left( \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix} \right) = f \left( \begin{pmatrix} z^{-1} & 0 \\ 0 & z \end{pmatrix} \right) \qquad \forall z \in S^1 .\] \end{corollary*} \vspace{-1em} We'll write \[ f(z) = f \left( \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix} \right) \] for $z \in S^1$ i.e. identify $T$ and $S^1$. \begin{notation*} \glssymboldefn{ev}{ev}{ev} We'll write \begin{align*} \ZZ[z, z^{-1})^{\text{ev}} &= \{f \in \ZZ[z, z^{-1}) \st f(z) = f(z^{-1})\} \\ &= \left\{ \sum a_n z^n \st a_n \in \ZZ, a_n = a_{-n} \forall n \in \ZZ\right\} \end{align*} \end{notation*} \begin{lemma*} If $\chichar$ is a \gls{char_rep} of a \gls{top_rep} of $\SU(2)$ then $\chichar|_T \in \suev\ZZ[z, z^{-1})$. \end{lemma*} \vspace{-1em} It follows that $\charring(\SU(2)) \lesssim \suev\ZZ[z, z^{-1})$ and we're going to see that it is an equality. \begin{proof} If $V$ is a \gls{top_rep} of $\SU(2)$ and $\chichar$ its character, then \[ \chichar|_T = \chichar_{\Res_T^{\SU(2)} V} \] since every \gls{char_rep} of $T \cong S^1$ lies in $\ZZ[z, z^{-1})$ and $\chichar|_T$ is even, we're done. \end{proof} Let's write \[ O_x = \left\{A \in \SU(2) \st \half \Trace A = x\right\} \] for $x \in [-1, 1)$. These are the conjugacy classes of $\SU(2)$, $O_1 = \{I\}$, $O_{-1} = \{-I\}$ and for $-1 < x < 1$. There is some (unique) $\theta \in (0, \pi)$ such that $\cos\theta = x$ and \[ O_x = \left\{ \begin{pmatrix} a & b \\ -\ol{b} & \ol{a} \end{pmatrix} ~\bigg|~ (\Im a)^2 + |b|^2 = 1 - x^2 = \sin^2 \theta \right\} \] (since $\Re a = x$). That is $O_x$ is a $2$-sphere of radius $|\sin \theta|$. \begin{center} \includegraphics[width=0.6\linewidth]{images/asdfasdfasdf.png} \end{center} Thus if $f$ is a class function on $\SU(2)$, since $f$ is constant on $O_{\cos\theta}$, \begin{align*} \Gint_{\SU(2)} f(g) \dd g &= \frac{1}{2\pi^2} \int_0^\pi \left[ \Gint_{O_{\cos\theta}} f(e^{i\theta}) \right] \dd \theta \\ &= \frac{1}{2\pi^2} \int_0^\pi 4\pi \sin^2\theta f(e^{i\theta}) \dd \theta \\ &= \frac{1}{\pi} \int_0^{2\pi} f(e^{i\theta}) \sin^2 \theta \dd \theta \end{align*} since $f$ is even. Note this is normalised correctly since \[ \frac{1}{\pi} \int_0^{2\pi} \sin^2\theta \dd \theta = \frac{\pi}{\pi} = 1 .\] So we can compute $\langle f, g\rangle_{\SU(2)}$ on class functiosn (and so characters) as \[ \langle f, g\rangle_{\SU(2)} = \frac{1}{\pi} \int_0^{2\pi} \ol{f}(e^{i\theta}) g(e^{i\theta}) \sin^2\theta \dd \theta \] \subsection{Representations of SU$(2)$} Let $V_n$ be the $\CC$-vector space of homogeneous polynomials in $x$ and $y$ of degree $n$. So \[ V_n = \bigoplus_{i = 1}^n \CC x^i y^{n - i} \] has dimension $n + 1$. $\GL_2(\CC)$ acts on $V_n$ via \begin{align*} \rho_n : \GL_2(\CC) &\to \GL(V_n) \\ \rho_n \left( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) (f(x, y)) &= f(ax + cy, bx + dy) \end{align*} i.e. \[ \rho_n \left( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) x^i y^i = (ax + cy)^i (bx + dy)^j .\] \begin{example*} $V_0 = \CC$ is the \gls{triv_rep}. $V_1 = \CC x \oplus \CC y$ is the natural \gls{rep} of $\GL_2(\CC)$ on $\CC^2$ with respect to basis $x, y$. $V_2 = \CC x^2 \oplus \CC xy \oplus \CC y^2$ and with respect to this basis, \[ \rho_2 \left( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = \left( \begin{pmatrix} a^2 & ab & b^2 \\ 2ac & ad + bc & 2bd \\ c^2 & cd & d^2 \end{pmatrix} \right) \] In general $V_n \simeq S^n V_1$ as \glspl{top_rep} of $\GL_2(\CC)$. \end{example*} \vspace{-1em} Since $\SU(2)$ is a subgroup of $\GL_2(\CC)$ we can view these $V_n$ as \glspl{rep} of $\SU(2)$ by restriction. In fact we'll see the $V_n$ are precisely the \gls{irred} \glspl{top_rep} of $\SU(2)$. Let's compute $\chichar_{V_n}|_T$ of $(\rho_n, V_n)$. \[ \rho_n \left( \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix} \right) (z^i y^j) = (zx)^i (z^{-1} y)^j = z^{i - j} x^i y^j \] So for each $0 \le j \le n$, $\CC x^j y^{n - j}$ is a \repdim{1} \gls{top_rep} of $T$ with \gls{char_rep} $z^{2j - n}$ and \[ \chichar_{V_n}(z) = z^n + z^{n - 2} + z^{n - 4} + \cdots + z^{2 - n} + z^{-n} = \frac{z^{n + 1} - z^{-(n + 1)}}{z - z^{-1}} \in \suev\ZZ[z, z^{-1}) \] \begin{theorem*} Each $V_n$ is \gls{irred} as a \gls{top_rep} of $\SU(2)$. \end{theorem*} \begin{proof} Let $0 \neq W \le V_n$ be $\SU(2)$-invariant. We must show $W = V_n$. $W$ is also $T$-invariant as $\Res_T^{\SU(2)} V_n = \bigoplus_{j = 0}^n \CC x^j y^{n - j}$ is as direct sum of non-isomorphic \repdim{1} \glspl{subrep}. ($*$) $W$ has a basis that is a subset of $\{x^j y^{n - j} \st 0 \le j \le n\}$ (uniqueness of isotypical decomposition). Thus $x^j y^{n - j} \in W$ for some $0 \le j \le n$. \[ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} x^j y{n - j} = \frac{1}{\sqrt{2}} (x - y)^j (x + y)^{n - j} \in W \] so by ($*$), $x^n \in W$. Repeat the same calculation for $j = n$, we get $(x - y)^n \in W$. So $x^i y^{n - i} \in W$ for all $0 \le i \le n$ and $W = V_n$. \end{proof} \textbf{Exercise} (Alternative proof)\textbf{:} Show \[ \langle \chichar_{V_n}, \chichar_{V_n} \rangle_{\SU(2)} = \frac{1}{2\pi} \int_0^{2\pi} \left( \frac{e^{(n + 1) i\theta} - e^{-(n + 1)i\theta}}{e^{i\theta} - e^{-i\theta}} \right)^2 \sin^2\theta \dd \theta = 1 \] \begin{theorem*} Every \gls{irred} \gls{top_rep} of $\SU(2)$ is isomorphic to $V_n$ for some $n\ge 0$. \end{theorem*} \begin{proof} Let $V$ be an \gls{irred} \gls{top_rep} of $\SU(2)$, $\chichar_V |_T \in \suev\ZZ[z, z^{-1})$. Let $\chichar_n = \chichar_{V_n}|_T$ for $n \ge 0$, so $\chichar_0 = 1$, $\chichar_1 = z + z^{-1}$, $\chichar_2 = z^2 + 1 + z^{-2}$ etc. It is easy to see that there exists $\lambda_0, \lambda_1, \ldots, \lambda_m \in \ZZ$ such that $\chichar_V |_T = \sum_{i = 0}^n \lambda_i \chichar_i$. By \nameref{orthog_of_chars}, \[ \lambda_i = \langle \chichar_V, \chichar_{V_i} \rangle_{\SU(2)} = \begin{cases} 1 & \text{if $V \simeq V_i$} \\ 0 & \text{if $V \not\simeq V_i$} \end{cases} \] Since $\chichar_V \neq 0$ there is some $i$ such that $\lambda_i = 1$ and $\chichar_V = \chichar_{V_i}$. \end{proof} We want to understand $\tensprod$ for \glspl{top_rep} of $\SU(2)$. We know \[ \chichar_{V \tensprod W} = \chichar_V \chichar_W \] for \glspl{rep} $V$ and $W$ of any group $G$. Let's compute some examples: \[ \chichar_{V_1 \tensprod V_2} (z) = (z + z^{-1})^2 = z^2 + 2 + z^{-2} = \chichar_{V_2} + \chichar_{V_0} \] so $\chichar_{V_1} \tensprod \chichar_{V_1} \simeq V_2 \oplus V_0$. \[ \chichar_{V_1 \tensprod V_2}(z) = (z + z^{-1})(z^2 + 1 + z^{-2}) = z^3 + z + z^{-1} + z + z^{-1} + z^{-3} = \chichar_{V_3}(z) + \chichar_{V_1}(z) \] so $V_1 \tensprod V_2 \simeq V_3 \oplus V_1$.