%! TEX root = RT.tex % vim: tw=50 % 20/11/2023 11AM \subsection{Worked example: $S^1$} \textbf{Goal:} Understand the \glspl{top_rep} of $S^1$. Since \[ f \mapsto \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \dd \theta \] is a \gls{Haar_int}, these \glspl{top_rep} are all unitary and hence \gls{comp_red}. So it is enough to understand the \gls{irred} (unitary) \glspl{top_rep} of $S^1$. By \nameref{schurs_lemma} all such have degree $1$, i.e. we have a correspondence \[ \{\text{\gls{irred} \glspl{top_rep} of $S^1$}\} \simbijto \{\text{continuous group homomorphisms $S^1 \to S^1$}\} .\] Since $\RR \to S^1$, $x \mapsto e^{2 \pi ix}$ induces an isomorphism of \glspl{top_group} \begin{align*} \RR / \ZZ &\simeqto S_1 \\ \left\{\substack{\text{continuous group}\\ \text{homomorphisms $S^1 \to S^1$}}\right\} &\simbijto \left\{\substack{\text{continuous group}\\ \text{homomorphisms $\theta : R \to S^1$}} ~\Big|~ \ker\theta \ge \ZZ\right\} \end{align*} \textbf{Fact:} If $f : \RR \to S^1$ is a continuous function with $f(0) = 1$ there is a unique continuous function $\alpha : \RR \to \RR$ such that $\alpha(0) = 0$ and $f(x) = e^{2\pi i \alpha(x)}$ for all $x \in \RR$. \begin{center} \begin{tikzcd} & \RR \ar[d, "e^{2\pi i x}"] \\ \RR \ar[ur, "\alpha", dashed] \ar[r, "f"] & S^1 \end{tikzcd} \end{center} \begin{proof}[Sketch proof] On small intervals we can define $\alpha(x) = \frac{1}{2\pi i \log x}$ and we choose the branch of $\log$ so that $\alpha(0) = 0$ and $\alpha$ is continuous. \end{proof} \begin{lemma*} If $\theta : \RR \to S^1$ is a continuous group homomorphism there is $\psi : \RR \to \RR$ a continuous group homomorphism such that $\theta(x) = e^{2\pi i \psi(x)}$ for all $x \in \RR$. \end{lemma*} \begin{proof} Our fact uniquely determines $\psi : \RR \to \RR$ continuous function such that $\psi(0) = 0$ and $\theta(x) = e^{2\pi i \psi(x)}$. We must show $\psi$ is a group homomorphism. To this end we consider \begin{align*} \Delta : \RR^2 &\to \RR \\ \Delta(a, b) &= \psi(a + b) - \psi(a) - \psi(b) \end{align*} We must show $\Delta \equiv 0$. It is easy to see that $\Delta$ is continuous. Also, \[ e^{2\pi i \Delta(a, b)} = \theta(a + b) \theta(a)^{-1} \theta(b)^{-1} = 1 \] so $\Delta$ takes values in $\ZZ$. So as $\RR^2$ is connected, $\Delta$ is constant ($\ZZ$ is discrete). But $\Delta(0, 0) = 0$, so $\Delta \equiv 0$ as required. \end{proof} \begin{lemma*} If $\psi : (\RR, +) \to (\RR, +)$ is a continuous group homomorphism then $\exists \lambda \in \RR$ such that $\psi(x) = \lambda x$ for all $x \in \RR$. \end{lemma*} \begin{proof} Let $\lambda = \psi(1)$. Then $\psi(n) = \lambda n$ for all $n \in \ZZ$ ($\psi$ is a homomorphism). So \[ m \psi \left( \frac{n}{m} \right) = \psi(n) = \lambda n \] for all $\frac{n}{m} \in \QQ$ ($\psi$ is a homomorphism), i.e. $\psi(x) = \lambda x$ for all $x \in \QQ$. But $\QQ$ is dense in $\RR$, so $\psi(x) = \lambda x$ for all $x \in \RR$. \end{proof} \begin{flashcard}[S1-reps-thm] \begin{theorem*}[Representations of $S^1$] \cloze{Every \gls{irred} \gls{top_rep} of $S^1$ is \repdim{1} and is of the form $z \mapsto z^n$ for some $n \in \ZZ$.} \end{theorem*} \begin{proof} \cloze{ We've already seen that if $\rho : S^1 \to \GL_d(\CC)$ is an \gls{irred} \gls{top_rep} then $d = 1$ and $\rho(S^1) \le S^1$. Moreover $\rho$ induces a continuous homomorphism $\theta : \RR \to S^1$ given by $\theta(x) = \rho(e^{2\pi i x})$. By the last two lemmas, there exists $\lambda \in \RR$ such that $\theta(x) = e^{2\pi i \lambda x}$ for all $x \in \RR$. Since $\theta(1) = \rho(e^{2\pi i}) = \rho(1) = 1$, we deduce $e^{2\pi i \lambda} = 1$, i.e. $\lambda \in \ZZ$. So $\rho(e^{2\pi i x}) = (e^{2\pi i x})^\lambda$ for $\lambda \in \ZZ$. } \end{proof} \end{flashcard} The theorem says that the ``\gls{char_table}'' of $S^1$ has rows given by $\chichar_n$ for $n \in \ZZ$, $\chichar_n(z) = z^n$. (unitary \repdim{1} \glsref[char_rep]{characters} of $\ZZ$ are all of the form $n \mapsto e^{in\theta}$ for some $e^{i\theta} \in S^1$). \begin{notation*} $\ZZ[z, z^{-1}) = \left\{ \sum_{n \in \ZZ} a_n z^n ~\bigg|~ a_n \in \ZZ, \sum_{n \in \ZZ} |a_n| < \infty\right\}j$ a ring under natual operations. \end{notation*} \vspace{-1em} If $V$ is any \gls{top_rep} of $S^1$ then it decomposes as a direct sum of \repdim{1} \glspl{subrep} and its character $\chichar_V = \sum_{n \in \ZZ} a_n z^n$ with all $a_n \ge 0$ and $\sum a_n = \dim V$, where as usual $a_n$ is the number of copies of $(z \mapsto z^n)$ in $V$. So \[ \charring(S^1) = \{\chichar - \chichar' \st \text{$\chichar$, $\chichar'$ are \glsref[char_rep]{characters} of $S^1$}\} = \ZZ[z, z^{-1}) \] By orthogonality of characters, \begin{align*} \langle \chichar_n, \chichar_m \rangle_{S^1} &= \frac{1}{2\pi} \int_0^{2\pi} e^{2\pi i (m - n)\theta} \dd \theta = d_{m, n} \\ a_n &= \langle \chichar_n, \chichar_V \rangle_{S^1} = \frac{1}{2\pi} \int_0^{2\pi} \chichar_V(e^{i\phi}) e^{-in\phi} \dd \phi \end{align*} and so \[ \chichar_V(e^{i\theta}) = \sum_{n \in \ZZ} \left( \frac{1}{2\pi} \int_0^{2\pi} \chichar_V(e^{i\phi}) e^{-in\phi} \dd \phi \right) e^{in\phi} \] So Fourier decomposition of $\chichar_V$ decomposes $\chichar_V$ into \gls{irred} \glsref[char_rep]{characters} and the FOurier mode is the multiplicity. \begin{remark*} In fact by the theory of Fourier series any continuous function on $S^1$ can be approximated uniformly by a finite $\CC$-linear combination of $\chichar_n$. Moreover the $\chichar_n$ form a complete orthonormal set in the Hilbert space \[ \Lp[2](S^1) = \left\{f : S^1 \to \CC ~\bigg|~ \int_0^{2\pi} |f(e^{i\theta})|^2 \dd \theta < \infty\right\} / \sim \] of square integrable functions on $S^1$, i.e. every function in $\Lp[2](S^1)$ has a unique expression as \[ f(e^{i\theta}) = \sum_{n \in \ZZ} \left( \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\phi}) e^{-in\phi} \dd \phi \right) e^{in\phi} \] converging with respect to the norm $\|f\|^2 = \int_0^{2\pi} |f(e^{i\theta})|^2 \dd \theta$. We can phrase this as \[ \Lp[2](S^1) = \hat{\bigoplus}_{n \in \ZZ} \CC \chichar_n \] ($\hat{\bigoplus}$ means complete direct sum), which is an analogue of \[ \CC G = \bigoplus_{V \in \Irr(G)} (\dim V) V \] for finite groups (cf \href{https://en.wikipedia.org/wiki/Peter\%E2\%80\%93Weyl_theorem}{Peter Weyl Theorem}). \end{remark*} \subsection{Second worked example $\SU(2)$} Recall $\SU(2) = \{A \in \GL_2(\CC) \st \ol{A}^\top A = I, \det A = 1\}$. If \[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \SU(2) \] then as $\det A = 1$, \[ A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} \ol{a} & \ol{c} \\ \ol{b} & \ol{d} \end{pmatrix} \] Thus $d = \ol{a}$ and $c = -\ol{b}$. Moreover, $|a|^2 + |b|^2 = 1$. In this way, \[ \SU(2) = \left\{ \begin{pmatrix} a & b \\ -\ol{b} & \ol{a} \end{pmatrix} ~\Bigg|~ a, b \in \CC, |a|^2 + |b|^2 = 1 \right\} \] which is homeomorphic to $S^3 \subset \RR^4 \simeq \CC^2$. More precisely if \[ \HH = \RR \cdot \SU(2) = \left\{ \begin{pmatrix} z & w \\ -\ol{w} & \ol{z} \end{pmatrix} \right\} \subset M_2(\CC) \] Then $\|A\|^2 = \det A$ defines a norm on $\HH \simeq \RR^4$ and $\SU(2)$ is the unit sphere in $\HH$ with respect to this norm. If $A \in \SU(2)$, \[ \|AX\| = \|X\| = \|XA\| \qquad \forall X \in \HH \] (since $\det A = 1$). So $\SU(2)$ acts on $\HH$ on both left and right by isometries. So after normalisation, usual integration on $S^3$ defines a \gls{Haar_int} on $\SU(2)$, i.e. \[ \Gint_{\SU(2)} f = \frac{1}{2\pi^2} \Gint_{S^3} f \] Here $\frac{1}{2\pi^2}$ is the volume of $S^3$ in $\RR^4$ with respect to usual measure. We now try to understand conjugacy classes in $\SU(2)$. Let \[ T = \left\{ \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix} ~\Bigg|~ z \in S^1 \right\} \le \SU(2) \] \begin{proposition*} \phantom{} \begin{enumerate}[(i)] \item Every conjugacy clsas in $\SU(2)$ contains an element of $T$ \item More precisely, if $O$ is a conjugacy class in $\SU(2)$, $O \cap T = \{t, t^{-1}\}$ for some $t \in T$. If $t = t^{-1}$, $t = \pm I$ and $O = \{t\}$. \item There is a continuous bijection \begin{align*} \{\text{conjugacy classes in $\SU(2)$}\} &\to [-1, 1) \\ A &\mapsto \half \Trace A \end{align*} \end{enumerate} \end{proposition*}