%! TEX root = RT.tex % vim: tw=50 % 09/10/2023 11AM \vspace{-2.5em} \begin{enumerate}[(1)] \setcounter{enumi}{5} \item \glssymboldefn{kX}{f : X to k}{kX} Given a finite set $X$ we can form the vector space \[ kX \defeq \{f : X \to k\} \] with pointwise operations. This has a basis $\langle \delta_x : x \in X \rangle$ where $\delta_x(y) = \delta{xy}$ for $y \in X$. If $f \in kX$ then $f = \sum_{x \in X} f(x) \delta_x$. If a group $G$ acts on $X$, we can define \begin{align*} \rho : G &\to \Aut(kX) \rho(g)(f)(x) &= f(g^{-1} x) \qquad \forall f \in kX, g \in G, x \in X \end{align*} If is easy to check $\rho(g)$ is linear for all $g \in G$ and $\rho(e) = \id_{kX}$. So it suffices to show $\rho(gh) = \rho(g) \rho(h) ~\forall g, h \in G$. To show this, note that for all $g, h \in G$, $f \in kX$, $x \in X$, we have \begin{align*} \rho(gh)(f)(x) &= f(h^{-1} g^{-1} x) \\ &= \rho(h)(f)(g^{-1} x) \\ &= \rho(g)\rho(h)(f)(x) \end{align*} as required. Note that for $g \in G$, $x, y \in G$, \[ (\rho(g)\delta_x)(y) = \delta_x(g^{-1} y) = \delta_{x, g^{-1}y} = \delta_{gx, y} = \delta_{gx}(y) \] So by linearity $\rho(g) \left( \sum f(x) \delta_x \right) = \sum_{x \in X} f(x) \delta_{gx}$. \glsnoundefn{reg_rep}{regular representation}{regular representations} \item In particular if $G$ is finite then $G$ acts on itself by left multiplication $G \times G \to G$, $(g, h) \mapsto gh$. This induces a \gls{rep} of $G$ on $kG$, called the \emph{regular representation}. If $g \in G$ then $\rho(g)(\delta_e) = \delta_g$ so $\rho(g) = e \iff g = e$. So the regular representation is always \gls{ff_rep}. \item If $(\rho, V)$ is a \gls{rep} of $G$ we can define a \gls{rep} $\rho^*$ of $G$ on $V^*$ as follows \[ \rho^*(g)(\theta)(v) = \theta(g^{-1} v) \qquad \forall g \in G, \theta \in V^*, v \in V \] $\rho^*(g)$ can be viewed as the adjoint of $\rho(g)^{-1}$ and recall that with respect to a pair of dual bases for $V$ and $V^*$, the matrix of the adjoint of a linear map is the transpose of the matrix of the map. So if $V = k^d$ so $\rho : G \to \GL_d(k)$ then $\rho^*(g) = (\rho(g)^{-1})^\top$. This is a homomorphism because $\GL_d(k) \to \GL_d(k)$, $A \mapsto (A^{-1})^\top$ is a homomorphism. \item More generally, if $(\rho, V)$ and $(\sigma, W)$ are two \glspl{rep} of $G$ then $(\tau, \Hom_k(V, W))$ is a \gls{rep} of $G$ as follows \[ \tau(g)(\alpha) = \sigma(g) \circ \alpha \circ \rho(g)^{-1} \qquad \forall g \in G, \alpha \in \Hom_k(V, W) \] \textbf{Exercise:} check the details (this is on Example Sheet 1). Note that if $W = k$ is the \gls{triv_rep} then we recover the previous example. Moreover if $V = k^n$, $W = k^m$ with the standard bases (so $\Hom_k(V, W) = \Mat_{m, n}(k)$) then $\tau(g)(A) = \sigma(g) A \rho(g)^{-1}$ for all $g \in G$, $A \in \Mat_{m, n}(k)$. \item If $\rho : G \to \GL(V)$ is a \gls{rep} (of $G$) and $\theta : H \to G$ is a group homomorphism then $\rho\theta : H \to \GL(V)$ is a \gls{rep} off $H$. If $H \le G$ and $\theta$ is the inclusion map then we call this the \emph{restriction of $\rho$ to $H$}. \end{enumerate} \subsection{The Category of Representations} If $\rho : G \to \GL(V)$ is a \gls{rep} and $\varphi : V \to W$ is a homomorphism of vector spaces then $\sigma : G \to \GL(W)$ defined by $\sigma(g) = \varphi \circ \rho(g) \circ \varphi^{-1}$ for all $g \in G$. \begin{flashcard}[isomorphic-representations-defn] \begin{definition*}[Isomorphic Representations] \glsadjdefn{rep_iso}{isomorphic}{\gls{rep}} \glsnoundefn{rep_isom}{isomorphism}{isomorphisms} \glsverbdefn{itts}{intertwines}{representation} \glsnoundefn[itts]{itt_map}{intertwining map}{intertwining maps} \cloze{ We say that $\rho : G \to \GL(V)$ and $\sigma : G \to \GL(W)$ are \emph{isomorphic representations} if there exists $\varphi : V \to W$ a $k$-linear isomorphism such that \[ \sigma(g) = \varphi \circ \rho(g) \circ \varphi^{-1} \qquad \forall g \in G \] We say $\varphi$ \emph{intertwines} $\rho$ and $\sigma$. } \end{definition*} \end{flashcard} Note that: \begin{enumerate}[(1)] \item $\id_V$ \gls{itts} $\rho$ and $\rho$. \item If $\varphi$ \gls{itts} $\rho$ and $\sigma$ then $\varphi^{-1}$ \gls{itts} $\sigma$ and $\rho$. \item If $\varphi$ \gls{itts} $\rho$ and $\sigma$ and $\varphi'$ \gls{itts} $\sigma$ and $\tau$, then $\varphi' \circ \varphi$ \gls{itts} $\rho$ and $\tau$. \end{enumerate} Therefore this definition of \gls{rep_isom} is an equivalence relation. Since every vector space is \gls{rep_iso} to $k^d$ for some $d \ge 0$, every \gls{rep} is \gls{rep_iso} to a matrix \gls{rep}. If $\rho, \sigma : G \to \GL_d(k)$ are matrix \glspl{rep} of the same \gls{rep_deg} then an \gls{itt_map} from $\rho$ to $\sigma$ is an invertible matrix $P \in \GL_d(k)$ such that \[ \sigma(g) = P \rho(g) P^{-1} \qquad \forall g \in G \] Thus matrix \glspl{rep} are \gls{rep_iso} precisely if they represent the same family of maps with respect to different bases. \begin{example*} \phantom{} \begin{enumerate}[(1)] \item If $G = \{e\}$ then $(\rho, V)$ and $(\sigma, W)$ are \gls{rep_iso} if and only if $\dim V = \dim W$. \item If $G = (\ZZ, +)$, then $(\rho, V)$ and $(\sigma, W)$ are \gls{rep_iso} if and only if there are bases for $V$ and $W$ such that $\rho(1)$ and $\sigma(1)$ are the same matrix. So \[ \{\text{\glspl{rep} of $(\ZZ, +)$}\} / \sim \leftrightarrow \{\text{conjugacy classes of invertible matrices}\} \] If $k = \CC$ the RHS is classified by Jordan Normal Form (more generally rational canonical form). \item If $G = C_2 = (\{\pm 1\}, \cdot)$ then \[ \{\text{\glspl{rep} of $C_2$}\} / \sim \leftrightarrow \{\text{conjugacy classes of matrices $A$ such that $A^2 = I$}\} \] Since the minimal polynomial of $A$ in RHS divides $X^2 - 1 = (X - 1)(X + 1)$ (which has distinct roots if characteristic of $k$ is not 2), every such matrix is conjugate to a diagonal matrix and all diagonal entries are $1$ or $-1$. \textbf{Exercise:} Show that there are precisely $n + 1$ \gls{rep_isom} classes of \glspl{rep} of $C_2$ of degree $n$ (for any field of characteristic not equal to 2). \item If $G$ acts on sets $X$ and $Y$ and there is a bijection $f : X \to Y$ such that $g \cdot (f(x)) = f(g \cdot x)$ for all $g \in G$, $x \in X$, then $f$ induces an \gls{rep_isom} of \glspl{rep} $\tilde{f} : kX \to kY$, $\tilde{f}(\theta)(y) = \theta(f^{-1} y)$. \textbf{Exercise:} check this. \end{enumerate} \end{example*}