%! TEX root = RT.tex % vim: tw=50 % 17/11/2023 11AM \newpage \section{Topological Groups} In this chapter, $k = \CC$. This is important, because we will be using topological properties of $\CC$ (contrary to previously, where we normally are just using the fact that it is algebraically closed). \subsection{Definitions and Examples} \label{sub8_1} \begin{flashcard}[top-group] \begin{definition*}[Topological group] \glsnoundefn{top_group}{topological group}{topological groups} \cloze{A \emph{topological group} $G$ is a group $G$ which also has the structure of a topological space such that the multiplication map $G \times G \to G$, $(x, y) \mapsto xy$ and the inversion map $G \to G$, $x \mapsto x^{-1}$ are both continuous.} \end{definition*} \end{flashcard} \subsubsection*{Examples} \begin{enumerate}[(1)] \item $\GL_n(\CC)$ with the subspace topology from $\Mat_n(\CC) \simeq \CC^{n^2}$, since \[ (AB)_{ij} = \sum_{k = 1}^n A_{ik} B_{kj} \qquad \text{and} \qquad A^{-1} = \frac{1}{\det A} \adj A \] are both continuous. More generally, if $V$ is any $\CC$-vector space we can give $\GL(V)$ the topology that makes the isomorphism $\GL(V) \to \GL_n(\CC)$ (given by choosing a basis) a homeomorphism. Since conjugation on $\GL_n(\CC)$, $X \mapsto P^{-1} XP$ is continuous for all $P \in \GL_n(\CC)$, this does not depend on the choice of basis. \item $G$ finite with discrete topology since all amps $G \times G \to G$ and $G \to G$ are continuous. \item $\On(n) = \{A \to \GL_n(\RR) \st A^\top A = I\}$, $\SO(n) = \{A \in \On(n) \st \det A = 1\}$. \item $\U(n) = \{A \in \GL_n(\CC) \st \ol{A}^\top A = I\}$, $\SU(n) = \{A \in \U(n) \st \det(A) = 1\}$. In particular, $\U(1) = S^1 = (\{x \in \CC^\times \st |z| = 1\}, \cdot)$. \item $*$ (non-examinable) $G$ a profinite group such as $\ZZ_p$ the completion of $\ZZ$ with respect to $p$-adic metric. \end{enumerate} \begin{flashcard}[rep-of-top-group] \begin{definition*}[Representation of a topological group] \glsnoundefn{top_rep}{representation}{representations} \cloze{A \emph{representation of a \gls{top_group}} $G$ is a continuous homomorphism \[ \rho : G \to \GL(V) \] ($V$ a vector space over $\CC$).} \end{definition*} \end{flashcard} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item If $G$ is a (finite) group with the discrete topology then every function $G \to \GL(V)$ is continuous and we recover the old definition. \item If $X$ is any topological space then $\alpha : X \to \GL_n(\CC)$ is continuous if and only if $\alpha_{ij} : X \to \CC$, $\alpha_{ij}(x) \defeq \alpha(x)_{ij}$ is continuous for all $i, j$. \end{enumerate} \end{remark*} \subsection{Compact groups} Our most powerful when studying finite groups was the operator $\frac{1}{|G|} \sum_{g \in G}$. We want to replace $\sum$ by $\int$. \begin{flashcard}[hair-integral-defn] \begin{definition*}[Haar integral] \glssymboldefn{Haar_int}{$\int_G$}{$\int_G$} \glsnoundefn{Haar_int}{Haar integral}{Haar integrals} \glssymboldefn{cts_func}{$C(X, Y)$}{$C(X, Y)$} \cloze{For $G$ a \gls{top_group} and $C(G, \RR) = \{f : G \to \RR \st f \text{ continuous}\}$, a linear map $\int_G : \cts(G, \RR) \to \RR$ is called a \emph{Haar integral} if \begin{enumerate}[(i)] \item $\int_G \indicator{G} = 1$ (So $\int_G$ is normalised so that total volume is $1$). \glsadjdefn{ti}{translation invariant}{\gls{Haar_int}} \item $\int_G f(xg) \dd g = \int_G f(g) \dd g = \int_G f(gx) \dd g$ for all $x \in G$ (so $\int_G$ is translation invariant). (we write $\int_G f(g) \dd g = \int_G f$ and $\int_G f(xg) \dd g$ means apply $\int_G$ to $g \mapsto f(xg) \in \cts(G, \RR)$). \item $\int_G f \ge 0$ if $f(g) \ge 0$ for all $g \in G$ (positivity). \end{enumerate} } \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item If $G$ is finite then $\Gint_G f = \frac{1}{|G|} \sum_{g \in G} f(g)$ is a \gls{Haar_int}. \item If $G = S^1$, $\Gint_G f = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \dd \theta$ is a \gls{Haar_int}. \end{enumerate} \end{example*} \vspace{-1em} \glssymboldefn{vHaar_int}{$\int_G$}{$\int_G$} Note that for any $\RR$-vector space $V$, $\Gint_G$ induces a linear map (also called $\Gint_G$) \[ \int_G : \cts(G, V) \to V \] Under the identification $V \simeq V^{**}$ for $\theta \in V^*$, $f \in \cts(G, V)$, \[ \theta \left( \vGint_G f \right) = \Gint_G \theta(f(g)) \dd g \] More concretely, if $v_1, \ldots, v_n$ is a basis for $V$ and $f \in \cts(G, V)$ then \[ f = \sum_{i = 1}^n f_i v_i \] with $f_i \in \cts(G, \RR)$ and \[ \vGint_G f = \sum_{i = 1}^n \left( \Gint_G f_i \right) v_i .\] This map is also \gls{ti} and sends a constant function to its only value. Moreover if $\alpha : V \to W$ is linear and $f \in \cts(G, V)$, then \[ \alpha \left( \vGint_G f \right) = \vGint_G \alpha(f) .\] In particular if $V$ is a $\CC$-vector space $v \mapsto iv$ is $\RR$-linear so $\vGint_G : \cts(G, V) \to V$ is $\CC$-linear. \begin{theorem*} If $G$ is a compact Hausdorff group then there is a unique \gls{Haar_int} on $G$. \end{theorem*} \begin{proof} Omitted. \end{proof} \glsadjdefn{cpt}{compact}{\gls{top_group}} All the examples in \cref{sub8_1} are compact Hausdorff except $\GL_n(\CC)$ which is not compact. We'll follow standard practice in this field and write ``compact'' to mean ``compact and Hausdorff''. \begin{flashcard}[weyls-unitary-trick] \begin{corollary*}[Weyl's unitary trick] If $G$ is a \gls{cpt} \gls{top_group} then every \gls{top_rep} $(\rho, V)$ of $G$ is \gls{uni_rep}. \end{corollary*} \begin{proof} \cloze{ As for finite groups, let $\langle \bullet, \bullet \rangle$ be an inner product on $V$. Then \[ (v, w) \defeq \Gint_G \langle \rho(g) v, \rho(g) w \rangle \dd g \] is the required \Ginv{} inner product. Since, for $x \in G$ and $v, w \in V$, \begin{align*} (\rho(x) v, \rho(x) w) &= \Gint_G \langle \rho(gx) v, \rho(gx) w \rangle \dd g \\ &= \Gint_G \langle \rho(g) v, \rho(g) w \rangle \dd g &&\text{(by $G$-invariance of $\Gint_G$)} \\ &= (v, w) \end{align*} Clearly $(\bullet, \bullet)$ is an inner product by using $\CC$-linearity of $\Gint_G$ and positivity of $\Gint_G$.} \end{proof} \end{flashcard} \begin{remark*} It follows that every \gls{cpt} subgroup of $\GL_n(\CC)$ is conjugate to a subgroup of $\U(n)$. \end{remark*} \begin{corollary*} All \glspl{top_rep} of a \gls{cpt} group are \gls{comp_red}. \end{corollary*} \vspace{-1em} If $G \to \GL(V)$ is a \gls{top_rep} then $\chichar_\rho \defeq \Trace \rho$ is a continuous \gls{cls_fn} on $G$. \begin{flashcard}[dim-Ug-formula] \begin{lemma*} If $U$ is a \gls{top_rep} of $G$ \gls{cpt} then \[ \dim U^G = \Gint_G \chichar .\] \end{lemma*} \begin{proof} \cloze{ Let $\pi \in \Hom_k(U, U)$ be defined by $\pi = \vGint_G \rho \in \Hom_k(U, U)$. If $x \in G$ then \[ \rho(x) \cdot \pi = \rho(x) \vGint_G \rho(g) \dd g = \vGint_G \rho(xg) \dd g = \pi \] since $\vGint_G$ is \gls{ti}. So $\Im \pi \le U^G$. If $u \in U^G$ then \[ \pi(u) = \left( \vGint_G \rho(g) \dd g \right)(u) = \vGint_G \rho(g) u \dd g = \vGint_G u = u \] Thus $\pi$ is a projection onto $U^G$. So \[ \dim U^G = \Trace \pi = \Trace \left( \vGint_G \rho \right) = \Gint_G \Trace \rho = \Gint_G \chichar .\] } \end{proof} \end{flashcard} \begin{corollary*}[Orthogonality of characters] If $G$ is a \gls{cpt} group and $V$, $W$ are \gls{irred} \glspl{rep} of $G$ then \[ \langle \chichar_V, \chichar_W \rangle_G = \begin{cases} 1 & \text{if $V \simeq W$} \\ 0 & \text{if $V \not\simeq W$} \end{cases} \] where \glssymboldefn{Gip_int}{$\langle f, g \rangle_G$}{$\langle f, g \rangle_G$} \[ \langle f_1, f_2 \rangle_G = \Gint_G \ol{f_1}(g) f_2(g) \dd g \] \end{corollary*} \vspace{-1em} To prove this as in the finite case we use $\chichar_v(g^{-1}) = \ol{\chichar_V}(g)$. This holds because $V$ is unitary.