%! TEX root = RT.tex % vim: tw=50 % 15/11/2023 11AM \subsection{Degree of irreducible representations} \begin{flashcard}[dimV-divides-size-G] \begin{theorem*} If $V$ is a \gls{simple} \gls{rep} of $G$ then $\dim V \mid |G|$. \end{theorem*} \begin{proof} \cloze{Let $\chichar = \chichar_V$ and we'll show $\frac{|G|}{\dim V} \in \algO \cap \QQ = \ZZ$. \begin{align*} \frac{|G|}{\dim V} &= \frac{1}{\chichar(e)} \sum_{g \in G} \chichar(g) \chichar(g^{-1}) \\ &= \frac{1}{\chichar(e)} \sum_{i = 1}^r |[g_i]_G| \chichar(g_i) \chichar(g_i^{-1}) \\ &= \sum_{i = 1}^r \homega_{\chichar}(g_i) \chichar(g_i^{-1}) \\ &\in \algO \end{align*} since $\algO$ is a ring and $\chichar(g_i^{-1})$ and $\homega_{\chichar}(g_i)$ are all in $\algO$. But also $\frac{|G|}{\dim V} \in \QQ$, so $\frac{|G|}{\dim V} \in \ZZ = \algO \cap \QQ$ as required.} \end{proof} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item If $G$ is a $p$-group and $\chichar$ is an \gls{irred} \gls{char_rep} then $\chichar(e)$ is always a power of $p$. In particular, if $|G| = p^2$ then as $\sum_{\chichar \in \Irr(G)} \chichar(e)^2 = |G|$ we see that $\chichar(e) = 1$ for all $\chichar \in \Irr(G)$, i.e. $G$ is abelian. \item If $G$ is $A_n$ or $S_n$ and $p > n$ is prime, then $p$ can't divide the \gls{rep_deg} of an \gls{irred} \gls{rep}. \end{enumerate} \end{example*} \vspace{-1em} In fact a strange result is true. \begin{flashcard}[burnside-1904] \begin{theorem*}[Burnside (1904)] \cloze{If $(\rho, V)$ is a \gls{simple} \gls{rep} of $G$ then we have $\dim V ~\big|~ |G / Z(G)|$.} \end{theorem*} \vspace{-1em} \cloze{Compare to $|[g]_G| = \frac{|G|}{|C_G(g)|} ~\bigg|~ \frac{|G|}{|Z(G)|}$ for all $g \in G$.} \begin{proof} \cloze{If $Z = Z(G)$ then by \nameref{schurs_lemma} $\rho|_Z : Z \to \GL(V)$ has image contained in $k^* \id_V$. $\rho(z) = \lambda_z \id_V$ say for each $z \in Z$. For each $m \ge 2$ consider the \gls{irred} \gls{rep} of $G^m = \ub{G \times G \times \cdots \times G}_{\text{$m$ times}}$ given by $\tpower \rho^m : G^m \to \GL(\tpower V^m)$. If $z = (z_1, \ldots, z_m) \in Z^m$ then \begin{align*} \tpower \rho^m(z) &= \sum_{i = 1}^m \lambda_{z_i} \id_{\tpower V^m} \\ &= \lambda_{\left( \prod_{i = 1}^m z_i \right)} \id_{\tpower V^m} \end{align*} So if $\prod_{i = 1}^m z_i = 1$ then $z \in \ker \tpower \rho^m$. So $\tpower V^m$ can be viewed as an \gls{irred} \gls{rep_deg} $(\dim V)^m$ \gls{rep} of $\frac{G^m}{Z'}$ where \[ Z' = \left\{(z_1, \ldots, z_m) \in Z^m ~\bigg|~ \prod_{i = 1}^m z_i = 1 \right\} \le Z^m .\] Moreover $|Z'| = |Z|^{m - 1}$. So by previous theorem $(\dim V)^m \mid \frac{|G|^m}{|Z|^{m - 1}}$. Now if $p$ is a prime and $p^a \mid \dim V$ then $p^{am} \mid \frac{|G|^m}{|Z|^{m - 1}} = \left| \frac{G}{Z} \right|^m |Z|$. By taking $m$ large enough that $p^m \nmid |Z|$, we see that $p^a \mid \left| \frac{G}{|} \right|$. Thus $\dim V \mid \left| \frac{G}{Z} \right|$ as claimed.} \end{proof} \end{flashcard} \begin{flashcard}[simple-has-no-deg-2-irred-rep] \begin{proposition*} If $G$ is a simple group then $G$ has no \gls{irred} \glspl{rep} of \gls{rep_deg} $2$. \end{proposition*} \begin{proof} \cloze{ If $G$ is abelian then all \gls{irred} \glspl{rep} have \gls{rep_deg} $1$. So we may assume that $G$ is non-abelian. If $|G|$ is even then $\exists x \in G$ of order $2$. By \es[2]{2}, if $\chichar$ is an \gls{irred} \gls{char_rep} of $G$ then $\chichar(x) \equiv \chichar(e) \pmod{4}$. So if $\chichar(e) = 2$ then $\chichar(x) = \pm 2$ so $\rho(x) = \pm I$. Thus $\rho(x) \in Z(\rho(G))$, \contradiction. ($G$ is non-abelian and simple, and $\rho$ is non-trivial). Now if $|G|$ is odd, we're done by (either of) today's theorems so far.} \end{proof} \end{flashcard} \subsection{Burnside's $p^a q^b$ theorem} \label{sub7_4} \begin{lemma*} Suppose $0 \neq \alpha \in \algO$ is of the form $\frac{1}{m} \sum_{i = 1}^m \lambda_i$ for some $\lambda_i \in \CC$ such that $\lambda_i^n = 1$ for some $n \in \NN$. Then $|\alpha| = 1$ (and so all $\lambda_i$ are equal). \end{lemma*} \begin{proof}[Sketch-proof (non-examinable)] See \courseref[Galois Theory]{Galois} for the details. By assumption, $\alpha \in \QQ(\eps)$, $\eps = e^{2\pi i/n}$. Let $\mathcal{G} = \Gal(\QQ(\eps) / \QQ)$. It is known that \[ \{\beta \in \QQ(\eps) \mid \sigma(\beta) = \beta ~\forall \sigma \in \mathcal{G}\} = \QQ .\] Consider $N(\alpha) = \prod_{\sigma \in \mathcal{G}} \sigma(\alpha)$. It is easy to verify that $\sigma(N(\alpha)) = N(\alpha)$ for all $\sigma \in \mathcal{G}$, i.e. $N(\alpha) \in \QQ$. Moreover, $N(\alpha) \in \algO$ since if $\alpha$ satisfies a monic integer polynomial then every $\sigma(\alpha)$ ($\sigma \in \mathcal{G}$) satisfies the same polynomial. Thus $N(\alpha) \in \ZZ$. But for each $\sigma \in \mathcal{G}$, \[ |\sigma(\alpha)| = \left| \frac{1}{m} \sum_{i = 1}^m \sigma(\lambda_i) \right|\le 1 .\] So $N(\alpha) = \pm 1$ and $|\alpha| = 1$. \end{proof} \begin{flashcard}[coprime-char-conj-size-implies-0-or-e] \begin{lemma*} Suppose $\chichar$ is an \gls{irred} \gls{char_rep} of $G$ and $g \in G$ such that $\chichar(e)$ and $|[g]_G|$ are coprime. Then $|\chichar(g)| = \chichar(e)$ or $|\chichar(g)| = 0$. \end{lemma*} \vspace{-1em} Note that if $|\chichar(g)| = \chichar(e)$ then $g$ acts as a scalar on the corresponding \gls{rep} $V$ and so $\rho(g) \in Z(\rho(G))$. \begin{proof} \cloze{ By Bezout's lemma, we can find $a, b \in \ZZ$ such that $a\chichar(e) + b|[g]_G| = 1$. Then \[ a\chichar(g) + b \left( \frac{|[g]_G| \chichar(g)}{\chichar(e)} \right) = \frac{\chichar(g)}{\chichar(e)} \eqdef \alpha \in \algO \] Since $\chichar(g)$ is a sum of $\chichar(e)$ $|G|$-th roots of unity, it follows from the last lemma that $\alpha = 0$ or $|\alpha| = 1$.} \end{proof} \end{flashcard} \begin{flashcard}[finite-non-abel-simple-no-prime-power-conj-class] \begin{proposition*} If $G$ is a finite non-abelian group with $g \neq e$ such that $|[g]_G|$ has prime power order, then $G$ is not simple. \end{proposition*} \begin{proof} \cloze{Suppose for contradiction that $G$ is simple and $g \in G \setminus \{e\}$ such that $|[g]_G| = p^r$ for some prime $p$. If $\chichar \in \Irr(G) \setminus \{\indicator{G}\}$ then $|\chichar(g)| < \chichar(e)$ since otherwise $\rho(g)$ is a scalar and lies in $Z(\rho(g)) = 1$. Thus by the last lemma, for every non-trivial character $\chichar$, either $p \mid \chichar(e)$ or $\chichar(g) = 0$. By column orthogonality, \[ 0 = \sum_{\chichar \in \Irr(G)} \chichar(e) \chichar(g)\] Thus \[ -\frac{1}{p} = \sum_{\substack{\chichar \in \Irr(G) \\ \chichar \neq \indicator{}}} \frac{\chichar(e)}{p} \chichar(g) \in \algO \cap \QQ = \ZZ \quad \contradiction \qedhere \]} \end{proof} \end{flashcard} \begin{flashcard}[burnside-pa-qb-thm] \begin{theorem*}[Burnside 1904] Let $p, q$ be primes and $G$ a group of order $p^a q^b$ with $a, b \ge 0$ and $a + b \ge 2$. Then $G$ is not simple. \end{theorem*} \begin{proof} \cloze{Without loss of generality $b > 0$. Let $\QQ$ be a Sylow-$p$-subgroup of $G$ and pick $g \in Z(\QQ) \setminus \{e\}$ (possible since $\QQ$ is a $q$-group). Now $q^b \mid |C_G(g)|$ so $|[g]_G| = p^r$ for some $0 \le r \le a$. The Theorem follows from the last proposition.} \end{proof} \end{flashcard} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item It follows that every group of order $p^a q^b$ is soluble, i.e. there exists a chain of subgroups $G = G_0 \ge G_1 \ge G_2 \ge \cdots \ge G_n = \{e\}$ such that for all $i$, $G_{i + 1} \normalsub G_i$ and $G_i / G_{i + 1}$ is abelian. \item Note that $|A_5| = 2^2 \cdot 3 \cdot 5$ so a finite simple group can have precisely $3$ prime factors. Conjugacy classes are $1, 15, 20, 12, 12$ not prime power order. \item The first purely group theoretic proof of the $p^a q^b$-theorem first appeared in 1972. \end{enumerate} \end{remark*}