%! TEX root = RT.tex % vim: tw=50 % 13/11/2023 11AM \newpage \section{Arithmetic Properties of Characters} We'll assume $G$ is finite and $k = \CC$. \subsection{Arithmetic results} \label{subsec7_1} The following facts will be proved in \courseref[Number Fields]{NF} next term. \begin{definition*} $x \in \CC$ is an \emph{algebraic integer} if it is a root of a monic polynomial with integer coefficients. \end{definition*} \subsubsection*{Facts} \begin{enumerate}[(1)] \refsteplabel[Fact (1)]{lec17_fact1} \item The algebraic integers form a subring $\algO$ of $\CC$. \glssymboldefn{algO}{$O$}{$O$} \refsteplabel[Fact (2)]{lec17_fact2} \item Any subring of $\CC$ that is finitely generated as an (additive) abelian group is contained in $\algO$. \refsteplabel[Fact (3)]{lec17_fact3} \item If $x \in \algO \cap \QQ$ then $x \in \ZZ$ (see ) \end{enumerate} For (1) and (2), see \href{http://www.dpmms.cam.ac.uk/study/IB/GroupsRings\%2BModules/2022-2023/Example\%20sheet\%204.pdf}{GRM Example Sheet 4, Q13 from 2023}. For (3), see \href{http://www.dpmms.cam.ac.uk/study/IA/Numbers\%2BSets/2021-2022/numset3_2021.pdf}{Numbers \& Sets Example Sheet 3, Q3 from 2021}. \begin{lemma*} If $\chichar$ is a \gls{char_rep} of $G$ then $\chichar(g) \in \algO$ for all $g \in G$. \end{lemma*} \begin{proof} We know that $\chichar(g)$ is a sum of $n$-th roots of unity ($n = |G|$, say). Each such $n$-th root of unity satisfies $X^n - 1$ and so lies in $\algO$. So $\chichar(g) \in \algO$ by \nameref{lec17_fact1}. \end{proof} \subsubsection*{The group algebra} We now want to make the $k$-vector space $kG$ into a ring. There are two sensible ways to do this. One is by pointwise multiplication making $kG$ a commutative ring. \begin{flashcard}[convolution-product] More usefully for us right now is the \emph{comvolution product} \glsnoundefn{conv_prod}{convolution product}{N/A} \glssymboldefn{conv_ring}{$kG$}{$kG$} \[ (f_1 f_2)(g) = \cloze{\sum_{x \in X} f_1(gx) f_2(x^{-1}) = \sum_{\substack{x, y \in G \\ xy = g}} f_1(x) f_2(y)} .\] \cloze{that makes $kG$ into a (usually) non-commutative ring.} \end{flashcard} We can verify that $\delta_g \delta_h = \delta_{gh}$ for all $g, h \in G$. So we can rephrase the product as \[ \left( \sum{g \in G} \lambda_g \delta_g \right) \left( \sum_{h \in G} \mu_H \delta_h \right) = \sum_{k \in G} \left( \sum{\substack{g, h \in G \\ gh = k}} \lambda_j \mu_h \right) \delta_k .\] From now on we'll have this product in mind when we view $\convring kG$ as a ring. A (finitely generated) $\convring kG$-module is ``the same'' as a \gls{rep} of $G$. Given a \gls{rep} $(\rho, V)$ of $G$ we make $V$ into a (finitely generated) $\convring kG$-module via \[ f \cdot v = \sum_{g \in G} f(g) \rho(g) v \qquad \forall v \in V, f \in \convring kG .\] Conversely, given a finitely generated $\convring kG$-module $M$, the underlying $k$-vector space is a \gls{rep} of $G$ via \[ \rho(g)(m) = \delta_{g \cdot m} \qquad \forall m \in M, g \in G .\] Moreover, under this correspondence \Glin{} maps correspond to $\convring kG$-module homomorphisms. \textbf{Exercise:} Suppose $kX$ is a permutation \gls{rep} of $G$. Calculate the action of $f \in \convring kG$ on $kX$ under the correspondence. \glssymboldefn{conv_center}{$Z(kG)$}{$Z(kG)$} It will prove useful to study $Z(\convring kG)$, the \emph{centre} of $\convring kG$; that is the subring of $\convring kG$ consisting of elements $f \in \convring kG$ such that $fh = hf$ for all $h \in \convring kG$. This is because for $f \in \convZ(\convring kG)$, \[ \sum_{g \in G} f(g) \rho(g) \in \GHom_G(V, V) \] for every \gls{rep} $(\rho, V)$ of $G$. \begin{flashcard}[center-kG-characterisation-lemma] \begin{lemma*} Suppose $f \in \convring kG$. Then $f \in \convZ(\convring kG)$ if and only if \cloze{$f \in \mathcal{C}_G$ the space of \glspl{cls_fn}. In particular, $\dim_k \convZ(\convring kG) = \#\text{conjugacy classes in $G$}$.} \end{lemma*} \begin{proof} \cloze{\begin{align*} f \in \convring kG &\iff fh = hf \quad \forall h \in \convring kG \\ &\iff f\delta_g = \delta_g f \quad \forall g \in G \\ &\iff \delta_{g^{-1}} f \delta_g = f &&\text{(since $\delta_e = 1$ and $\delta_{g^{1}} \delta_g = \delta_e$)} \end{align*} But \begin{align*} (\delta_{g^{-1}} f \delta_g)(x) &= \sum_{g \in G} (\delta_{g^{-1}} f)(xy^{-1}) \delta_g(y) \\ &= (\delta_{g^{-1}} f)(xg^{-1}) \\ &= f(gxg^{-1}) \qquad \forall g \in G \end{align*} So $f \in \convZ(\convring kG)$ if and only if $f \in \mathcal{C}_G$ as required.} \end{proof} \end{flashcard} \begin{remark*} The multiplication on $\convZ(\convring kG)$ and $\mathcal{C}_G$ will not be the same even though their $k$-vector space structures are the same even though both are commutative. \end{remark*} \begin{notation*} \glssymboldefn{clsum}{$C_i$}{$C_i$} Given $g \in G$ define the \emph{class sum} \[ C_{[g]_G}(x) = \begin{cases} 1 & x \in [g]_G \\ 0 & x \not\in [g]_G \end{cases} \] Then if $[g_1]_G, \ldots, [g_r]_G$ is a list of conjugacy classes in $G$ we write \[ C_i \defeq C_{[g_i]_G} .\] We used to write $\indicator{[g_i]_G}$ for $C_i$. We have switched to draw attention to the different multiplication. \end{notation*} \begin{flashcard}[clsum-product-prop] \begin{proposition*} \[ \clsum_i \clsum_j = \cloze{\sum_{l = 1}^r a_{ij}^l \clsum_l} \] where \[ a_{ij}^l = \cloze{|\{(x, y) \in [g_1]_G \times [g_j]_G \st xy = g_l\} \in \ZZ} .\] \cloze{The $a_{ij}^l$ are called the \emph{structure constants} of $\convZ(\convring kG)$.} \end{proposition*} \begin{proof} \cloze{Since $\convZ(\convring kG)$ is a ring, \[ \clsum_i \clsum_j = \sum_{l = 1}^r a_{ij}^l C_l \] for some $a_{ij}^l \in k$. But we explicitly compute \begin{align*} a_{ij}^l &= (\clsum_i \clsum_j)(g_l) \\ &= \sum_{x, y \in G} \clsum_i(x) \clsum_j(y) \\ &= |\{(x, y) \in [g_i]_G \times [g_j]_G \st xy = g_l\}| \end{align*} as required.} \end{proof} \end{flashcard} SUppose now that $(\rho, V)$ is an \gls{irred} \gls{rep} of $G$. Then we've seen that if $z \in \convZ(\convring kG)$, then \[ z : V \to V, \quad zv = \sum_{g \in G} z(g) \rho(g) \in \GHom_G(V, V) = k\id_V \] ($k$ algebraically closed). So we get a $k$-algebra homomorphism \[ \omega_\rho : \convZ(\convring kG) \to k \] where $z \in \convring \convZ(kG)$ acts by $\omega_{\rho(z)} \id_V$ on $V$. Taking traces we see \begin{align*} \label{lec17_l206_eq} (\dim V_i) \homega_{\rho(z)} &= \sum_{g \in G} z(g) \chichar_\rho(g) \\ \implies \homega_\rho(z) &= \sum_{g \in G} \frac{z(g) \chichar_\rho(g)}{\chichar_\rho(e)} \\ \implies \homega_\rho(\clsum_i) &= \frac{\chichar_\rho(g_i)}{\chichar_\rho(e)} |[g_i]_G| \tag{\dag} \end{align*} We now see that $\homega_\rho$ only depends on $\chichar_\rho$ so we can write $\homega_{\chichar_\rho} = \homega_\rho$. \begin{lemma*} The values $\homega_{\chichar}(\clsum_i) \in \algO$ for all \gls{irred} \glsref[char_rep]{characters} $\chichar$. \end{lemma*} \vspace{-1em} Note that htis is not immediately clear as $\frac{1}{\chichar(e)} \not\in \algO$ for $\chichar(e) \neq 1$. \begin{proof} Since $\homega_{\chichar}$ is an algebra homomorphism, \[ \label{lec17_l233_eq} \homega_{\chichar}(\clsum_i) \homega_{\chichar}(\clsum_j) = \sum_{l = 1}^r a_{ij}^l \homega_{\chichar}(\clsum_l) \tag{$*$} \] so the subring of $\CC$ generated by the $\homega_{\chichar}(\clsum_i)$ is a finitely generated abelian group under $+$. By \nameref{lec17_fact2} in \cref{subsec7_1}, it follows that ecah $\homega_{\chichar}(\clsum_i) \in \algO$. \end{proof} \begin{lemma*} \[ a_{ij}^l = \frac{|G|}{|\clsum_G(g_i)| |\clsum_G(g_j)|} \sum_{\chichar \in \Irr(G)} \frac{\chichar(g_i) \chichar(g_j) \chichar(g_l^{-1})}{\chichar(e)} .\] In particular, $a_{ij}^l$ is deterined by the character table. \end{lemma*} \begin{proof} By \eqref{lec17_l233_eq} and \eqref{lec17_l206_eq} \[ \frac{\chichar(g_i)}{\chichar(e)} |[g_i]_G| \frac{\chichar(g_j)}{\cancel{\chichar(e)}} |[g_j]_G| = \sum_{l = 1}^r \frac{a_{ij}^l \chichar(g_l) |[g_l]_G|}{\cancel{\chichar(e)}} \] TODO \end{proof}