%! TEX root = RT.tex % vim: tw=50 % 10/11/2023 11AM Recall that for $g \in G$, \[ \FXW(KgH, W)^H = \{f : KgH \to W \st f(xh) = h^{-1} f(x) ~\forall x \in KgH, h \in H\} \] is a \gls{rep} of $K$ via \[ (kf)(x) = f(k^{-1} x) \qquad \forall x \in KgH \in k \in K .\] Last time we reduced the proof of \nameref{mack_rest_form} to the following lemma: \begin{flashcard}[mackeys-rest-form-sublemma] \begin{lemma*} There is an isomorphism of \glspl{rep} of $K$ \[ \FXW(KgH, W)^H \simeqto \cloze{\FXW(K, \leftgrep{}^g W)^{K \cap \leftgrep{}^g H}} .\] \end{lemma*} \begin{proof} \cloze{Let $\Theta : \FXW(KgH, W)^H \to \FXW(K, \leftgrep{}^g W)$, $\Theta(f)(k) = f(kg)$. If $k' \in K$, \[ (k' \cdot \Theta(f))(k) = \Theta(f)(k'^{-1} k) = f(k'^{-1} g) = (k' \cdot f)(kg) = \Theta(k' f)(k) \] i.e. $\Theta$ is $k$-linear. If $ghg^{-1} \in K$ for some $h \in H$, then \begin{align*} \Theta(f)(kghg^{-1}) &= f(kgh) \\ &= \rho(h)^{-1} f(kg) \\ &= (\leftgrep{}^g \rho)(ghg^{-1}) \Theta(f)(k) \end{align*} i.e. $\Im\Theta \le \FXW(K, \leftgrep{}^g W)^{K \cap \leftgrep{}^g H}$. We try to define an inverse to $\Theta$ via \begin{align*} \psi : \FXW(K, \leftgrep{}^g W)^{K \cap \leftgrep{}^g H} &\to \FXW(KgH, W)^H \\ \psi(f)(kgh) &= \rho(h^{-1}) f(k) \end{align*} If $k_1 gh_1 = k_2 gh_2$ then $k_2^{-1} k_1 = g(h_2 h_1^{-1}) g^{-1} \in K \cap \leftgrep{}^g H$. \begin{align*} f(k_2) &= f(k_1 (k_2^{-1} k_1)^{-1}) \\ &= (\leftgrep{}^g \rho) (gh_2 h_1^{-1} g^{-1})f(k_1) \\ \rho(h_2 h_1^{-1}) f(k_1) \end{align*} So $\rho(h_2)^{-1} f(k_2) = \rho(h_1^{-1}) f(k_1)$ i.e. $\psi(f)$ is well-defined. Moreover if $f \in \FXW(KgH, W)^H$, then \[ \psi\Theta(f)(kgh) = \rho(h)^{-1} \Theta(f)(k) = \rho(h^{-1}) f(kg) = f(kgh) .\] and if $f \in \FXW(K, \leftgrep{}^g W)^{\leftgrep{}^g H \cap K}$. Also \[ \Theta\psi(f)(k) = \psi(f)(kg) = f(k) \] so $\psi$ is inverse to $\Theta$.} \end{proof} \end{flashcard} \subsection{Frobenius Groups} \begin{flashcard}[frobenius-1901] \begin{theorem*}[Frobenius 1901] \label{frob_1901} \cloze{Let $G$ be a finite group acting transitively on a set $X$. If each $g \in G \setminus \{e\}$ fixes at most one element of $X$ then \[ K = \{e\} \cup \{g \in G \st gx \neq x ~\forall x \in X\} \] is a normal subgroup of $G$ of order $|X|$.} \end{theorem*} \end{flashcard} \begin{flashcard}[frob-group] \begin{definition*}[Frobenius group] \glsadjdefn{frob_gp}{Frobenius}{group} \cloze{A \emph{Frobenius group} is a finite group $G$ that has a transitive action on a set $X$ with $1 < |X| < |G|$ such that each $g \in G \setminus \{e\}$ fixes at most one element of $X$. It follows from \nameref{frob_1901} that Frobenius groups can't be simple. The subgroup $K$ is called the \emph{Frobenius kernel} and any of the subgroups \[ \Stab_G(x) \] for $x \in X$ are called \emph{Frobenius complements}. } \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $G = D_{2n}$. For $n$ odd acting on vertices of an $n$-gon in the usual way. The reflections fix precisely one vertex and the non-trivial solutions fix no vertices. \item \[ G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \bigg| a, b \in \FF_p, a \neq 0 \right\} \] acting on \[ X = \left\{ \begin{pmatrix} x \\ 1 \end{pmatrix} \bigg| x \in \FF_p \right\} \] by matrix multiplication. \end{enumerate} \end{example*} \begin{note*} No proof of \nameref{frob_1901} is known that does not use \gls{rep} theory! \end{note*} \begin{flashcard}[proof-of-frob-1901] \begin{proof}[Proof of \nameref{frob_1901}] \cloze{Fix $x \in X$ and let $H = \Stab_G(x)$ so $|G| = |H| |X|$ by Orbit Stabiliser theorem. By hypothesis if $g \in G \setminus H$ then \[ \{e\} = \Stab_G(gx) \cap \Stab_G(x) .\] Thus \begin{enumerate}[(i)] \item $\left| \bigcup_{g \in G} gHg^{-1} \right| = \left| \bigcup_{x \in X} \Stab_G(x) \right| = (|H| - 1) |X| + 1$ \item If $h_1, h_2 \in H$ then $[h_1]_H = [h_2]_H \iff [h_1]_G = [h_2]_G$. \item $C_G(h) = C_H(h)$ if $h \in H \setminus \{e\}$. \end{enumerate} By (i), \[ |K| = \left|\{e\} \cup \left(G \setminus \bigcup_{x \in X} \Stab_G(x) \right) \right| = |H| |X| - ((|H| - 1)|X| + 1) + 1 = |X| \] as claimed. We must show $K \normalsub G$. If $\chichar$ is any \gls{char_rep} of $H$, we can compute $\Ind_H^G \chichar$: \begin{align*} \Ind_H^G \chichar(g) &= \sum_{[h]_H \subset [g]_G} \frac{|C_G(x)|}{|C_H(h)|} \chichar(h) \\ &= \begin{cases} \frac{|G|}{|H|} \chichar(e) & \text{if $g = e$} \\ \chichar(h) & \text{if $[g]_G = [h]_G \neq \{e\}$ by (i) and (ii)} \\ 0 & \text{if $g \in K \setminus \{e\}$} \end{cases} \end{align*} Suppose $\Irr(H) = \{\chichar_1, \ldots, \chichar_r\}$ and let \[ \boxed{\theta_i = \Ind_H^G \chichar_i - \chichar_i(e) \indicator{G} - \chichar_i(e)\Ind_H^G \indicator{H} \in \charring(G)} \] (this is sort of the magic bit). So \[ \theta_i(g) = \begin{cases} \chichar_i(e) & g = e \\ \chichar_i(h) & \text{$[g]_G = [h]_G$ for some $h \in H$} \\ \chichar_i(e) & g \in K \end{cases} \] If $\theta_i$ were a \gls{char_rep} of a \gls{rep} of $G$ then the kernel of the \gls{rep} would contain $K$. Since $\theta_i \in \charring(G)$, $\theta_i = \sum n_i \psi_i$ for $n_i \in \ZZ$ and $\psi_i \in \Irr(G)$. Now we calculate: \begin{align*} \Gip\langle \theta_i, \theta_i \rangle_G &= \frac{1}{|G|} \sum_{g \in G} |\theta_i(g)|^2 \\ &= \frac{1}{|G|} \left( \sum_{h \in H \setminus \{e\}} \frac{|G|}{|H|} |\chichar_i(h)|^2 + \sum_{k \in K} |\chichar_i(e)|^2 \right) \\ &= \frac{|X|}{|G|} \sum_{h \in H} |\chichar_i(h)|^2 \\ &= \langle \chichar_i, \chichar_i \rangle_H \\ &= 1 \end{align*} So $\sum n_j^2 = 1$ and $\theta_i = \pm \psi_j$ for some $j$. But $g_i(e) = \chichar_i(e) > 0$ so $\theta_i \in \Irr(G)$. To finish we write \[ \theta = \sum_{i = 1}^r \chichar_i(e) \theta_i \] and so $\theta(h) = \sum_{i = 1}^r \chichar_i(e) \chichar_i(h) = 0$ for $h \in H \setminus \{e\}$ by column orthogonality. Also $\theta(k) =\sum_{i = 1}^r \chichar_i(e)^2 = |H|$ by column orthogonality. Thus $K$ is the kernel of the \gls{rep} corresponding to $\theta$.} \end{proof} \end{flashcard} In his thesis, John Thompson proved (among other things), that $K$ must be nipotent or equivalently the product of its Sylow-$p$-subgroups.