%! TEX root = RT.tex % vim: tw=50 % 08/11/2023 11AM \begin{corollary*} If $k = \CC$ then \[ \Gip\langle \chichar_V, \chichar_{\Ind_H^G W} \rangle_G = \langle \chichar_V|_H, \chichar_W \rangle_G \] In particular, $\chichar_{\Ind_H^G W} = \Gamma^*(\chichar_W)$. \end{corollary*} \begin{proof}[Proof of \nameref{frob_recip}] We'll prove $\GHom_G(V, \FXW(G, W)) \simeq \Hom_k(V, W)$ as \glspl{rep} of $H$ and then deduce the result by taking \Ginvpl[H]. Here the action of $H$ on the left hand side is given by \[ (h \cdot \theta)(v) = h \cdot \theta(v) \qquad \theta \in \GHom_G(V, \FXW(G, W)), v \in V, h \in H \] so $\GHom_G(V, \FXW(G, W))^H = \GHom_G(V, \FXW(G, W)^H) = \GHom_G(V, \Ind_H^G W)$. Note that this means \begin{align*} (h \cdot \theta)(v)(x) &= h(\theta(v)(xh)) \\ h(\theta(h^{-1} x^{-1} v)(w)) \end{align*} $\forall x \in G$ since $\theta$ is \Ginv. We can define a linear map \begin{align*} \label{lec15_l33_eq} \psi : \GHom_G(V, \FXW(G, W)) &\to \Hom_k(V, W) \\ \psi(\theta)(v) &= \theta(v)(e) \tag{$*$} \end{align*} We claim $\psi$ is an $H$-\gls{itt_map}. First we prove for $h \in H$, $\theta \in \GHom_G(V, \FXW(G, W))$, $v \in V$. \begin{align*} h \cdot (\psi(\theta))(v) &= h(\psi(\theta)(h^{-1} v)) \\ &= h(\theta(h^{-1} v)(e)) \\ &= (h \cdot \theta)(v)(e) &&\text{by \eqref{lec15_l33_eq} for $x = e$} \\ &= \psi((h \cdot \theta))(v) \end{align*} and $\psi$ is $H$-equivariant. Given $\varphi \in \Hom_k(V, W)$ we can define \begin{align*} \varphi_G &\in \Hom_k(V, \FXW(G, W)) \\ \varphi_G(v)(x) &= \varphi(x^{-1} v) \qquad \forall x \in G, v \in V \end{align*} Then for all $g, x \in G$, $v \in V$, \[ \varphi_G(gv)(x) = \varphi(x^{-1} g v) = \varphi_G(v)(g^{-1} x) = (g \cdot \varphi_G(v))(x) \] i.e. $\varphi_G \in \GHom_G(V, \FXW(G, W))$. We can compute $\psi(\varphi_G)(v) = \varphi_G(v)(e) = \varphi(v)$, $\varphi \in \Hom_k(V, W), v \in V$ and \[ \psi(\theta)_G (v)(x) = \psi(\theta)(x^{-1} v) = \theta(x^{-1} v)(e) = x^{-1} \theta(v)(e) = \theta(v)(x) \] for $\theta \in \GHom_G(V, \FXW(G, W)), x \in G, v \in V$. Thus $\varphi \mapsto \varphi_G$ is an inverse to $\psi$. \end{proof} \begin{remark*} We could instead have computed $\chichar_{\Ind_H^G V}$ directly and shown that it is equal to $\indGamma^*(\chichar_W)$ and then deduced \nameref{frob_recip} from this when $k = \CC$. \end{remark*} \subsection{Mackey Theory} This is the study of \glspl{rep} like $\Res_K^G \Ind_H^G W$ for $H, k$ subgroups of $G$ and $W$ a \gls{rep} of $H$. We can (and will) use it to characterise when $\Ind_H^G W$ is \gls{irred} as a \gls{rep} of $G$ (when $k = \CC$). If $H, K$ are subgroups of $G$ then $H \times K$ acts on $G$ via \[ (h, k) \cdot g = kgh^{-1} \] An orbit of this action is called a \emph{double coset}. We write \[ KgH = \{kgh \st k \in K, h \in H\} \] for the orbit containing $g$. \begin{flashcard}[double-cosets-notation-defn] \begin{definition*} $K \leftquot G / H = \cloze{\{KgH \st g \in G\}}$ \cloze{is the set of double cosets.} \end{definition*} \end{flashcard} \vspace{-1em} \glssymboldefn{leftgrep}{${}^g W, \rho, H$}{${}^g W, \rho, H$} For any \gls{rep} $(\rho, W)$ of $H$ and $g \in G$ we can define a \gls{rep} $({}^g \rho, {}^g W)$ bw \begin{align*} \rho^g : {}^g H &\to \GL(W) \\ ghg^{-1} &\mapsto \rho(h) \end{align*} where ${}^g H \defeq gHg^{-1} \le G$. \begin{flashcard}[mackeys-restriction-formula-thm] \begin{theorem*}[Mackey's restriction formula] \label{mack_rest_form} \cloze{If $G$ is a finite group with subgroups $H$ and $K$ and $W$ is a \gls{rep} of $H$ then \[ \Res_K^G \Ind_H^G W \simeq \bigoplus_{KgH \in K \leftquot H / H} \Ind_{K \cap \leftgrep {}^g H}^K \Res_{\leftgrep {}^g H \cap K}^H \leftgrep {}^g W \] } \end{theorem*} \begin{proof} \cloze{ Note that \begin{align*} \Ind_H^G W &= \FXW(G, W)^H \\ &= \FXW \left( \coprod_{KgH \in K \leftquot G / H} KgH, W \right)^H \\ &\cong \bigoplus_{KgH \in K \leftquot G / H} \FXW(KgH, W)^H \end{align*} as \glspl{rep} of $K$. So it suffices to show \[ \FXW(KgH, W)^H \simeq \FXW(K, \leftgrep {}^g W)^{K \cap \leftgrep {}^g H} \] as \glspl{rep} of $K$. We'll defer this to next time. } \end{proof} \end{flashcard} \begin{corollary*}[Character version of Mackey restriction] If $\chichar$ is a \gls{char_rep} or a \gls{rep} of a $H$ then \[ (\Ind_H^G \chichar)|_K = \sum_{KgH \in K \leftquot G / H} \Ind_{\leftgrep {}^g H \cap K}^K (\leftgrep {}^g \chichar|_{\leftgrep {}^g H \cap K}) \] \end{corollary*} \vspace{-1em} \textbf{Exercise:} Prove this corollary directly using \glsref[char_rep]{characters}. \begin{flashcard}[mackeys-irreducibility-criterion-coro] \begin{corollary*}[Mackey's irreducibility criterion] \label{mack_irred_crit} If $H \le G$ and $W$ is a $\CC$-\gls{rep} of $H$ then $\Ind_H^G W$ is \gls{irred} if and only if \begin{enumerate}[(i)] \item \cloze{$W$ is \gls{irred} as a \gls{rep} of $H$} \item \cloze{For each $g \in G \setminus H$, the two \glspl{rep} $\Res_{\leftgrep {}^g H \cap H}^{\leftgrep {}^g H} \leftgrep {}^g W$ and $\Res_{\leftgrep {}^g H \cap H}^H W$ of $H \cap \leftgrep {}^g H$ have no \gls{irred} \glspl{subrep} in common.} \end{enumerate} \end{corollary*} \begin{proof} \cloze{ \begin{align*} \Gip\langle \chichar_{\Ind_H^G W}, \chichar_{\Ind_H^G W} \rangle_G &= \langle \chichar_W, \chichar_{\Res_H^G \Ind_H^G W} \rangle_G &&\text{(\nameref{frob_recip})} \\ &= \sum_{HgH \in H \leftquot G / H} \langle \chichar_W, \chichar_{\Ind_{H \cap \leftgrep {}^g H}^H \Res_{\leftgrep {}^g H \cap H}^{\leftgrep {}^g H} \leftgrep {}^g W} \rangle_H &&\text{(\nameref{mack_rest_form})} \\ &= \sum_{HgH \in H \leftquot G / H} \langle \Res_{\leftgrep {}^g H \cap H}^H \chichar_W, \Res_{\leftgrep {}^g H \cap H}^{\leftgrep {}^g H} \chichar_{\leftgrep {}^g W} \rangle &&\text{(\nameref{frob_recip})} \end{align*} So $\Ind_H^G W$ is \gls{irred} if and only if $\RHS$ is $1$. The term for the double coset $HeH$ is $\langle \chichar_W, \chichar_W \rangle_H \ge 1$ and all the other terms are $\ge 0$ so irreducibility is equivalent to $\langle \chichar_W, \chichar_W \rangle_H = 1$ and all otehr temrs are $0$. $\langle \chichar_W, \chichar_W \rangle_H = 1$ if and only if condition (1). $\langle \Res_{H \cap \leftgrep {}^g H}^H \chichar_W, \Res_{\leftgrep {}^g H \cap H}^{\leftgrep {}^g H} \chichar_{\leftgrep {}^g W} \rangle = 0$ if and only if (ii) for $g$.} \end{proof} \end{flashcard} Note for condition (ii) we only need to check for a family of double cosets excluding $HeH = H$. \begin{corollary*} If $H \normalsub G$ and $W$ is an \gls{irred} \gls{rep} of $H$ then \[ \text{$\Ind_H^G W$ is \gls{irred}} \iff \leftgrep {}^g \chichar_W \neq \chichar_W \qquad \forall g \in G \setminus H \] ($\leftgrep {}^g \chichar_W (ghg^{-1}) = \chichar_W (h)$). \end{corollary*} \begin{proof} Since $H \normalsub G$, $\leftgrep {}^g H = H$ for all $g \in G$ and $\leftgrep {}^g W$ is \gls{irred} since $W$ is. So by \nameref{mack_irred_crit}, \begin{align*} \text{$\Ind_H^G W$ is \gls{irred}} &\iff W \not\simeq \leftgrep{}^g W \qquad \forall g \in G \setminus H \\ &\iff \chichar_W \neq \leftgrep{}^g \chichar_w \qquad \forall g \in G \setminus H \qedhere \end{align*} \end{proof} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $H = \langle r \rangle \simeq C_n$ the subgroup of rotations in $G = D_{2n}$. The \gls{irred} \glsref[char_rep]{characters} of $H$ are all of the form \[ \chichar_k(r^j) = e^{2\pi i j k / n} \] We see that $\Ind_H^G \chichar_K$ is \gls{irred} if and only if \[ \text{$\chichar_K(rj) \neq \chichar(r - j)$ for some $j$} \iff \text{$\chichar_K$ is not real valued} \] \item $G = S_n$, $H = A_n$. If $g \in S_n$ is a cycle type that splits in $A_n$ and $\chichar$ is an \gls{irred} \gls{char_rep} of $A_n$ taking different values on the two classes, then \[ \Ind_{A_n}^{S_n} \chichar \] is \gls{irred}. \end{enumerate} \end{example*}