%! TEX root = RT.tex % vim: tw=50 % 06/11/2023 11AM \newpage \section{Induction} \subsection{Construction} Suppose $H$ is a subgroup of a (finite) group $G$. Then the restriction from $G$ to $H$ gives a way of building \glspl{rep} of $H$ from \glspl{rep} of $G$. We want to go the other way and build \glspl{rep} of $G$ from \glspl{rep} of $H$. Recall that $[g]_G$ denotes the conjugacy class of $g$ in $G$. So \[ \indicator{[g]_G}(x) = \begin{cases} 1 & \text{if $x$ is conjugate to $g$ in $G$} \\ 0 & \text{otherwise} \end{cases} \] We note that for $g \in G$, \[ [g^{-1}]_G = [g]_G^{-1} = \{y^{-1} \st y \in [g]_G\} \] since $(xgx^{-1})^{-1} = xg^{-1} x^{-1}$. So $\indicator{[g]_G}^* = \indicator{[g^{-1}]_G}$. If $H \le G$ then $[g]_G \cap H$ is (possibly empty) union of $H$-conjugacy classes \[ [g]_G \cap H = \bigcup_{[h]_H \subseteq [g]_G} [h]_H \] \glssymboldefn{gamma_induction}{$\Gamma$}{$\Gamma$} So $\indGamma : \mathcal{C}_G \to \mathcal{C}_H$; $\indGamma(f) = f|_H$ is a well-defined linear map with $\indGamma (\indicator{[g]_G}) = \sum_{[h]_H \subseteq [g]_G} \indicator{[h]_H}$. Since for every finite group $G$ \[ \Gip\langle f_1, f_2 \rangle_G = \frac{1}{|G|} \sum_{g \in G} f_1^*(g) f_2(g) \] defines a non-degenerate bilinear form on $\mathcal{C}_G$, the map $\indGamma$ has an adjoint $\indGamma^* : \mathcal{C}_G \to \mathcal{C}_G$ given by \[ \langle \indGamma(f_1), f_2 \rangle_H = \langle f_1, \indGamma^*(f_2) \rangle_G \] for $f_1 \in \mathcal{C}_G$, $f_2 \in \mathcal{C}_H$. In particular for $f \in \mathcal{C}_H$, \[ \Gip\langle \indicator{[g^{-1}]_G}, \indGamma^*(f) \rangle_G = \frac{1}{|G|} \sum_{x \in [g]_G} \indGamma^*(f)(x) = \frac{1}{|C_G(g)|} \indGamma^*(f)(g) \] On the other hand \begin{align*} \Gip\langle \indicator{[g^{-1}]_G}, \indGamma^*(f) \rangle_G &= \langle \indGamma (\indicator{[g^{-1}]_G}), f \rangle_H \\ &= \sum_{[h]_H \subseteq [g]_G} \frac{1}{|C_H(h)|} f(h) \end{align*} so combining these we see that \[ \label{lec14_l60_eq} \indGamma^*(f)(g) = \sum_{[h]_H \subseteq [g]_G} \frac{|C_G(g)|}{|C_H(h)|} f(h) \tag{1} \] Since $xgx^{-1} = ygy^{-1} \iff x^{-1} y \in C_G(g)$, \begin{align*} \indGamma^*(f)(g) &= \sum_{h \in [g] \cap H} \frac{|C_G(g)|}{|C_H(h)| |[h]_H|} f(h) \\ &= \frac{1}{|H|} \sum_{x \in G} f^\circ (x^{-1} gx) \end{align*} where \[ f^\circ(g) = \begin{cases} f(g) & g \in H \\ 0 & \text{otherwise} \end{cases} \] \textbf{Question:} Is $\indGamma^*(\charring(H)) \subseteq \charring(G)$? Suppose $\chichar$ is a $\CC$-\gls{char_rep} of $H$ and $\psi$ is an \gls{irred} $\CC$-\gls{char_rep} of $G$. Then \[ \Gip\langle \indGamma^*(\chichar), \psi \rangle_G = \langle \chichar, \indGamma(\psi) \rangle_H \in \NN_0 \] by \nameref{orthog_of_chars} since $\indGamma(\psi)$ is a \gls{char_rep} of $H$. So writing $\Irr(G) = \{\text{\gls{irred} $\CC$-\gls{char_rep} of $G$}\}$, \[ \label{lec14_l91_eq} \indGamma^*(\chichar) = \sum_{\psi \in \Irr(G)} \langle \chichar, \psi|_H \rangle_H \psi \tag{2} \] is even a \gls{char_rep} of $G$. \begin{example*} $G = S_3$ and $H = A_3 = \{e, (123), (132)\}$. If $f \in \mathcal{C}_H$ then by \eqref{lec14_l60_eq}, \begin{align*} \indGamma^*(f)(e) &= \frac{|C_{S_3}(e)|}{|C_{A_3}(e)|} f(e) = \frac{6}{3} f(e) = 2f(e) \\ \indGamma^*(f)((12)) &= 0 \\ \indGamma^*(f)((123)) &= \frac{|C_{S_3}((123))|}{|C_{A_3}((123))|} f((123)) + \frac{|C_{S_3}((123))|}{|C_{A_3}((132))|} f((132)) \\ &= \frac{3}{3} f((123)) + \frac{3}{3} f((132)) = f((123)) + f((132)) \end{align*} Thus \begin{center} \begin{tabular}{c|c|c|c} $A_3$ & $1$ & $(123)$ & $(132)$ \\ \hline $\chichar_1$ & $1$ & $1$ & $1$ \\ $\chichar_2$ & $1$ & $\omega$ & $\omega^2$ \\ $\chichar_3$ & $1$ & $\omega^2$ & $\omega$ \end{tabular} \qquad \begin{tabular}{c|c|c|c} $S_3$ & $1$ & $(12)$ & $(123)$ \\ \hline $\indGamma^*(\chichar_1)$ & $2$ & $0$ & $2$ \\ $\indGamma^*(\chichar_2)$ & $2$ & $0$ & $-1$ \\ $\indGamma^*(\chichar_3)$ & $2$ & $0$ & $-1$ \end{tabular} \end{center} (where $\omega = e^{2\pi i/3}$ and we use the fact that $\omega + \omega^{-1} = 1$). Thus $\indGamma^*(\chichar_1) = \indicator{} + \eps$ and $\indGamma^*(\chichar_2) = \indGamma^*(\chichar_3) = \chichar_V$ where $V$ is the \repdim{2} \gls{irred} \gls{rep} of $S_3$ consisted with formula \eqref{lec14_l91_eq} since $\indGamma(\indicator{}) = \indGamma(\eps) = \chichar_1$ and $\indGamma(\chichar_V) = \chichar_2 + \chichar_3$. \end{example*} \vspace{-1em} Note that $\chichar$ is an \gls{irred} \gls{char_rep} of $G$, $\indGamma^*(\chichar)$ can be an \gls{irred} \gls{char_rep} of $G$ but need not be in general. Also note that $\indGamma^*(\chichar)(e) = \frac{|G|}{|H|}\chichar(e)$. We'd like to build a \gls{rep} of $G$ with \gls{char_rep} $\indGamma^*(\chichar)$ given a \gls{rep} $W$ of $H$ with \gls{char_rep} $\chichar$. \begin{flashcard}[fxw-defn] \cloze{Suppose that $X$ is a finite set and $W$ is a $k$-vector space we may define} \glssymboldefn{FXW}{$F$}{$F$} \[ \mathcal{F}(X, W) = \cloze{\{f : X \to W\}} \] \cloze{the $k$-vector space of functions $X$ to $W$.} \end{flashcard} So $\FXW(X, k) = kX$. Then $\dim \FXW(X, W) = |X| \dim W$ since if $w_1, \ldots, w_d$ is a basis for $W$ then \[ (\delta_x w_i \st x \in X, 1 \le i \le d) \] is a basis for $\FXW(X, W)$. If $K$ is a group and $X$ has a $K$-action and $W$ is a \gls{rep} of $k$ then $\FXW(X, W)$ is a \gls{rep} of $K$ via $(k \cdot f)(x) = k \cdot (f(k^{-1} x))$ for all $f \in \FXW(X, W), k \in K, x \in X$. For example if $W = k$ is the \gls{triv_rep}, then $\FXW(X, W) = kX$ as \glspl{rep} of $K$. Now suppose $H \le G$ are finite groups then $G$ can be viewed as a set with $G \times H$-action via $(g \cdot h) \cdot x = gxh^{-1}$, $\forall (g, h) \in G \times H, x \in X$. If $W$ is a \gls{rep} of $G$ then we can view $W$ sa a \gls{rep} of $G \times H$ via \[ (g, h) \cdot w = h \cdot w \] Now $\FXW(G, W)$ is a \gls{rep} of $G \times H$ via \[ ((g, h) \cdot f)(x) = h f(g^{-1}xh) \qquad \forall (g, h) \in G \times H, f \in \FXW(G, W), x \in G \] So it can be viewed as a \gls{rep} of $G$ and as a \gls{rep} of $H$ via $g \mapsto (g, e_H)$ and $h \mapsto (e_G, h)$ respectively and the actions commute. Now \begin{align*} \FXW(G, W)^H &= \{f \in \FXW(G, W) \st (e, h) f = f ~\forall h \in H\} \\ &= \{f \in \FXW(G, W) \st f(xh) = h^{-1} f(x) ~\forall h \in H, x \in G\} \end{align*} is a \Ginv{} subspace of $\FXW(G, W)$ since if $(e, h) \cdot f = f$ then for $g \in G$, \[ (e, h)(g, e) f = (g, e)(e, h) f = (g, e) f \] \begin{example*} $\FXW(G, k)^H \simeq k G / H$ if $k$ is the \gls{triv_rep} of $G$. \end{example*} \begin{flashcard}[induced-rep-defn] \begin{definition*}[Induced representation] \glsverbdefn{induction}{induction}{N/A} \glssymboldefn{Ind}{Ind${}_H^G$}{Ind${}_H^G$} \cloze{ Suppose $H$ is a subgroup of a finite group $G$ and $W$ is a \gls{rep} of $H$. The \emph{induced representation} \[ \Ind^G_H W = \FXW(G, W)^H \] is a \gls{rep} of $G$. } \end{definition*} \end{flashcard} \begin{flashcard}[dim-induced-rep-lemma] \begin{lemma*} $\dim \Ind_H^G W = \cloze{\frac{|G|}{|H|} \dim W}$. \end{lemma*} \begin{proof} \cloze{ Let $X = G / H$ be the left cosets of $H$ in $G$ and let $x_1, \ldots, x_{|G / H|}$ be coset representatives. Then \begin{align*} \theta : \FXW(G, W)^H &\to \FXW(X, W) \\ \theta(f) (x_i H) &= f(x_i) \end{align*} is a $k$-linear map with inverse $\varphi(l)(x_i h) = h^{-1} l(x_i)$ for all $l \in \FXW(X, W), h \in H$, $i = 1, \ldots, |G/H|$. } \end{proof} \end{flashcard} \begin{theorem*}[Frobenius reciprocity] \label{frob_recip} If $V$ is a \gls{rep} of $G$ and $W$ is \gls{rep} of $G$ then \[ \GHom_G(V, \Ind_H^G W) \simeq \GHom_H(\Res_H^G V, W) \] \glssymboldefn{Res}{Res}{Res} where $\Res_H^G V$ is the restriction of $V$ to $H$. \end{theorem*}