%! TEX root = RT.tex % vim: tw=50 % 03/11/2023 11AM Recall \begin{align*} \chichar_{\ssquare V} (g) &= \half (\chichar_V(g)^2 + \chichar_v(g^2)) \\ \chichar_{\asquare V}(g) &= \half (\chichar_V(g)^2 - \chichar_V(g^2)) \end{align*} \begin{center} \begin{tabular}{c|c|c|c|c|c} $S_4$ & $e$ & $(12)(34)$ & $(123)$ & $(12)$ & $(1234)$ \\ \hline $\indicator{}$ & $1$ & $1$ & $1$ & $1$ & $1$ \\ $\eps$ & $1$ & $1$ & $1$ & $-1$ & $-1$ \\ $\chichar_3$ & $3$ & $-1$ & $0$ & $1$ & $-1$ \\ $\eps\chichar_3$ & $3$ & $-1$ & $0$ & $-1$ & $1$ \\ $\chichar_5$ & $2$ & $2$ & $-1$ & $0$ & $0$ \\ \hline $\chichar_3^2$ & $9$ & $1$ & $0$ & $1$ & $1$ \\ $\chichar_3(g^2)$ & $3$ & $3$ & $0$ & $3$ & $-1$ \\ $\ssquare \chichar_3$ & $6$ & $2$ & $0$ & $2$ & $0$ \\ $\asquare \chichar_3$ & $3$ & $-1$ & $0$ & $-1$ & $1$ \end{tabular} \end{center} since $e^2 = e = ((12)(34))^2 = (12)^2$, $(123)^2 = (132)$, $(1234) = (13)(24)$. Thus $\ssquare \chichar_3 = \indicator{} + \chichar_3 + \chichar_5$, $\asquare \chichar_3 = \eps \chichar_3$. So given $1, \eps, \chichar_3$, we can construct the remaining characters from $\ssquare \chichar_3$ and $\asquare \chichar_3$. More generally, for any vector sapce $V$ we may consider \glssymboldefn{tpower}{$V^{\otimes n}$}{$V^{\otimes n}$} \[ V^{\tprod n} = \ub{V \tprod \cdots \tprod V}_{\text{$n$ times}} = V \tprod V^{\tprod (n - 1)} \] for $n \ge 1$ ($V^{\tprod 0} = k$, $V^{\tprod 1} = V$). Then for any $w \in S_n$, we can define an (invertible) linear map \begin{align*} \sigma(w) : \tpower V^n &\to \tpower V^n \\ v_1 \tvprod \cdots \tvprod v_n &\mapsto v_{w^{-1}(1)} \tvprod \cdots \tvprod v_{w^{-1}(n)} \end{align*} for $v_1, \ldots, v_n \in V$. \textbf{Exercise:} Show that this defines a \gls{rep} of $S_n$ on $\tpower V^n$ and that if $V$ is a \gls{rep} of $G$ then the $G$-action and $S_n$-action on $\tpower V^n$ commute. Thus we can decompose $\tpower V^n$ as a \gls{rep} of $S_n$ into \glsref[iso_component]{isotypic components} if $\characteristic k = 0$ and each will be a \Ginv\ subspace of $\tpower V^n$. \begin{definition*} \glsnoundefn{symm_pow}{symmetric power}{N / A} \glsnoundefn{alt_pow}{alternating power}{exterior power} \glssymboldefn{symm_pow}{$S^n V$}{$S^n V$} \glssymboldefn{alt_pow}{$\Lambda^n V$}{$\Lambda^n V$} If $V$ is a vector space \begin{enumerate}[(i)] \item The $n$-th \emph{symmetric power} of $V$ is \[ S^n V \defeq \{a \in \tpower V^n \st \sigma(w)(a) = a ~\forall w \in S_n\} \] \item The $n$-th \emph{alternating / exterior power} of $V$ is \[ \Lambda^n V \defeq \{a \in V \st \sigma(w)(a) = \eps(w) a ~\forall w \in S_n\} \] \end{enumerate} \end{definition*} \vspace{-1em} Note that for $n \ge 3$, \[ \spow{n}{V} \oplus \apow{n}{V} = \{a \in \tpower V^n \st \sigma(w) a = a ~\forall w \in A_n\} \subsetneq \tpower V^n \] We also define the following notation for $v_1, \ldots, v_n \in V$ \begin{align*} v_1 v_2 \cdots v_n &= \frac{1}{n!} \sum_{w \in S_n} v_{w(1)} \tvprod \cdots \tvprod v_{w(n)} \\ v_1 \anwedge \cdots \anwedge v_n &= \frac{1}{n!} \sum_{w \in S_n} \eps(w) v_{w(1)} \tvprod \cdots \tvprod v_{w(n)} \end{align*} (for $\characteristic k = 0$). \textbf{Exercise:} Show that if $v_1, \ldots, v_d$ is a basis for $V$ then \[ v_{i_1} \cdots v_{i_n} \st 1 \le i_1 \le i_2 \le \cdots \le i_n \le d\} \] is a basis for $\spow{n}{V}$, and \[ v_{i_1} \anwedge \cdots \anwedge v_{i_n} \st 1 \le i_1 \le i_2 \le \cdots \le i_n \le d\} \] is a basis for $\apow{n}{V}$. Hence given a basis for $V$ with respect to which $\rho(g)$ is diagonal, compute $\chichar_{\spow{n}{V}}(g)$ and $\chichar_{\apow{n}{V}}(g)$ in terms of the eigenvlaues of $\rho(g)$. For any vector space $V$, $\apow{\dim V} V \simeq k$ and $\apow{n}{V} = 0$ for $n > \dim V$. \textbf{Exercise:} Show that if $(\rho, V)$ is a \gls{rep} of $G$ then $\apow{\dim V} V \simeq \det \rho$ as a \gls{rep} of $G$. \begin{definition*} Given a vector space $V$ we can define the \emph{tensor algebra} of $V$ \[ TV \defeq \bigoplus_{n \ge 0} \tpower V^n \] as an infinite dimensional vector space. Then $TV$ is a (non-commutative) graded ring with product \[ (v_1 \tvprod \cdots \tvprod v_r) \cdot (w_1 \tvprod \cdots \tvprod w_n) = v_1 \tvprod \cdots \tvprod v_r \tvprod w_1 \tvprod \cdots \tvprod w_s \in \tpower V^{(r + s)} \] For $v_1 \tvprod \cdots v_r \in \tpower V^r$, $w_1 \tvprod \cdots \tvprod w_r \in \tpower V^r$ with graded quotient map. The \emph{symmetric algebra} of $V$ \[ SV \defeq \frac{TV}{\{x \tvprod y - y \tvprod x \st x, y \in V\}} \] and \emph{exterior algebra} of $V$ \[ \Lambda V \defeq \frac{TV}{\{x \tvprod y + y \tvprod x \st x, y \in V\}} \] \end{definition*} \vspace{-1em} One can show $\symmalg V \simeq \bigoplus_{n \ge 0} \spow{n}{V}$ and $\altalg V \simeq \bigoplus_{n \ge 0} \apow{n}{V}$ in characteristic $0$. This can be seen via \[ x_1 \cdots x_n \mapsfrom [x_1 \tvprod \cdots \tvprod x_n] \qquad x_1 \awedge \cdots \awedge x_n \mapsfrom [x_1 \tvprod \cdots \tvprod x_n] \] $\symmalg V$ is a commutative graded ring and $\altalg V$ is a graded commutative ($x \in \apow{r} V$ and $y \in \apow{s}{V}$ then $x \awedge y = (-1)^{rs} y \awedge x$) ring. \subsection{Duality} Recall that $\mathcal{C}_G$ has a $*$-operation given by $f^*(g) = f(g^{-1})$ for all $f \in \mathcal{C}_G$, $g \in G$. This also restricts to $\charring(G)$. Recall also if $(\rho, V)$ is a \gls{rep} of $G$ then the \emph{dual rep} $(\rho^*, V^*)$ is defined by \[ \rho^*(g)(\theta)(v) = \theta(\rho(g^{-1})(v)) \qquad \forall v \in V, g \in G, \theta \in V^* \] \begin{lemma} $\chichar_{V^*} = \chichar_V^*$. \end{lemma} \begin{proof} If $\rho(G)$ is represented by $A$ with respect to a bais $v_1, \ldots, v_d$ for $V$ and $\eps_1, \ldots, \eps_d$ is the dual basis for $V^*$, then $\rho(g^{-1}) v_i = \sum_j (A^{-1})_{ji} v_j$ So \[ \rho^*(g)(\eps_k)(v_i) = \eps_k(\rho^{-1}(g) v_i) = \eps_k \left( \sum_j (A^{-1})_{ji} v_j \right) = (A^{-1})_{ki} \] and \[ \rho^*(g)(\eps_k) = \sum_j (A^{-1})^\top_{jk} \eps_j \] i.e. $\rho^*(g)$ is represented by $(A^{-1})^\top$ with respect to this dual basis. Taking traces gives $\chichar_{\rho^*}(g) = \chichar_\rho (g^{-1}) = \chichar_\rho^*(g)$. \end{proof} We say $V$ is self-dual if $V \simeq V^*$ as \glspl{rep} of $G$. When $G$ is finite and $k = \CC$ then $V$ is self-dual if and only if $\chichar_V^* = \chichar_V$ which happens if and only if $\chichar_V(g) \in \RR ~\forall g \in G$ since $\chichar_V^* = \ol{\chichar_V}$ in this case. \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $G = \langle x \rangle \simeq C_3$ and $V = \CC$, $\rho : G \to \CC^\times$, $x^j \mapsto e^{2\pi ij/3}$. Then $\rho^*(x^j) = e^{-2\pi ij/3}$ and $V$ is not self-dual. \item $G = S_n$ since $[g]_{S_n} = [g^{-1}]_{S_n} ~\forall g \in S_n$, every \gls{rep} of $S_n$ is self-dual. \item Permutation \glspl{rep} are always self-dual. \end{enumerate} \end{example*} \vspace{-1em} We now have various ways of building \glspl{rep} of a group $G$. \begin{itemize} \item permutation \glspl{rep}. \item restrict \glspl{rep} of $H$ to $G$ along homomorphisms $\theta : G \to H$. \item tensor products. \item $\spow{n}{V}$ and $\apow{n}{V}$. \item decomposition of \glspl{rep} into \gls{irred} components. \item character theoretically, e.g. row / column orthogonality in \gls{char_table}. \end{itemize} One more next time related to restriction from $G$ to $H$ for $H \le G$ called induction.