%! TEX root = RT.tex % vim: tw=50 % 01/11/2023 11AM \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item \glsref[tens_prod]{Tensor product} of \glspl{rep} defined last time is a generalisation of the \gls{tens_prod} of a \gls{rep} and a \repdim{1} \gls{rep} previously defined. \item If $X$ and $Y$ are finite sets with $G$-action \begin{align*} \alpha_{X \times Y} : kX \tprod kY &\to kX \times Y \\ \delta_x \tvprod \delta_y &\mapsto \delta_{(x, y)} \end{align*} is an \gls{itt_map}. \end{enumerate} \end{remark*} \begin{flashcard}[character-ring-defn] \begin{definition*}[Character ring] \glsnoundefn{char_ring}{character ring}{character rings} \glssymboldefn{char_ring}{$R(G)$}{$R(G)$} \cloze{ The \emph{character ring} $R(G)$ of a group $G$ is defined by \[ R(G) \defeq \{\chichar_1 - \chichar_2 \mid \chichar_1, \chichar_2 \text{are \glsref[char_rep]{characters} of $G$}\} \subset \mathcal{C}_G \] } \end{definition*} \end{flashcard} \vspace{-1em} Since $\chichar_{V_1 \oplus V_2} = \chichar_{V_1} + \chichar_{V_2}$, $\charring(G)$ is a subgroup of $\mathcal{C}_G$ under $+$. Since $\indicator{G}$ is a \gls{char_rep}, $\charring(G)$ contains the multiplicative $1$ in $\mathcal{C}_G$. Since $\chichar_{V_1 \tprod V_2} = \chichar_{V_1} \cdot \chichar_{V_2}$, \[ (\chichar_{V_1} - \chichar_{V_2}) \cdot (\chichar_{W_1} - \chichar_{W_2}) = \chichar_{(V_1 \tprod W_1) \oplus (V_2 \tprod W_2)} - \chichar_{(V_2 \tprod W_1) \oplus (V_1 \tprod W_2)} \in \charring(G) \] $\charring(G)$ is closed under $\cdot$ and so $\charring(G)$ is a subring of $\mathcal{C}_G$. \textbf{Observation:} If $(\rho, V)$ is a \gls{rep} of $G$ and $(\sigma, W)$ is a \gls{rep} of another group $H$, then \begin{align*} \rho \trprod \sigma : G \times H &\to \GL(V \tprod W) \\ (g, h) &\mapsto \rho(g) \tvprod \sigma(h) \end{align*} is a \gls{rep} of $G \times H$, by parts (i) and (ii) in \nameref{the_last_lemma_last_time_l11}. Moreover, \[ (\chichar_V \otimes \chichar_W)(g, h) = \chichar_{V \tprod W} (g, h) = \chichar_V(g) \chichar_W(h) \] by part (iii) of the \hyperref[the_last_lemma_last_time_l11]{same lemma}. Thus \begin{align*} \charring(G) \times \charring(H) &\to \charring(G \times H) \\ (\chichar_V, \chichar_W) &\mapsto \chichar_V \otimes \chichar_W \end{align*} defines a $\ZZ$-bilinear map. The construction of $V \tprod W$ as a \gls{rep} of $G$ from last time can be viewed as the case $G = H$ in the construction followed by restriction along \begin{align*} G &\to G \times G \\ g &\mapsto (g, g) \end{align*} \begin{flashcard}[chars-of-cartesian-group-prod-prop] \begin{proposition*} Suppose $G$ and $H$ are finite groups, and $(\rho_1, V_1), \ldots, (\rho_r, V_r)$ are the \gls{irred} $\CC$-\glspl{rep} of $G$ and $(\sigma_1, W_1), \ldots, (\sigma_s, W_s)$ are all the \gls{irred} $\CC$-\glspl{rep} of $H$. For each $1 \le i \le r$, $1 \le j \le s$, $(\rho_i \trprod \sigma_j, V_i \tprod W_j)$ is a \gls{irred} $\CC$-\gls{rep} of $G \times H$. Moreover, all \gls{irred} $\CC$-\glspl{rep} of $G \times h$ arise in this way. \end{proposition*} \fcscrap{ We've seen this when $G$, $H$ are abelian before since all these \glspl{rep} have degree $1$ in this case. } \begin{proof} \cloze{ Let $\chichar_1, \ldots, \chichar_r$ be the \glsref[char_rep]{characters} of $\rho_1, \ldots, \rho_r$, and $\psi_1, \ldots, \psi_s$ the \glsref[char_rep]{characters} of $\sigma_1, \ldots, \sigma_s$. The \gls{char_rep} of $\rho_i \trprod \sigma_j$ is $(\chichar_i \otimes \psi_j)(g, h) = \chichar_i(g) \psi_j(h)$. Then \begin{align*} \langle \chichar_i \otimes \psi_j, \chichar_k \otimes \psi_l \rangle_{G \times H} &= \frac{1}{|G \times H|} \sum_{(g, h) \in G \times H} \ol{\chichar_i(g) \psi_j(h)} \chichar_k(g) \psi_l(h) \\ &= \left( \frac{1}{|G|} \sum_{g \in G} \ol{\chichar_i(g)} \chichar_k(g) \right) \left( \frac{1}{|H|} \sum_{h \in H} \ol{\psi_j(g)} \psi_l(g) \right) \\ &= \Gip\langle \chichar_i, \chichar_k \rangle_G \langle \psi_j, \psi_l \rangle_H \\ &= \delta_{ik} \delta_{jl} \end{align*} So the $\chichar_i \otimes \psi_j$ are pairwise distinct and irreducible. Now \[ \sum_{i, j} (\dim V_i \tprod W_j)^2 = \left( \sum_i ()\dim V_i)^2 \right) \left( \sum_j (\dim W_j)^2 \right) = |G| |H| = |G \times H| \qedhere \] } \end{proof} \end{flashcard} \textbf{Question:} If $V, W$ are \gls{irred} \glspl{rep} of $G$, can $V \tprod W$ be an \gls{irred} \gls{rep} of $G$? We've seen that if $\dim V = 1$ or $\dim W = 1$ then yes. Typically the answer is no. \begin{example*} $G = S_3$ \begin{center} \begin{tabular}{c|c|c|c} & $1$ & $(123)$ & $(12)$ \\ \hline $\indicator{}$ & $1$ & $1$ & $1$ \\ $\eps$ & $1$ & $1$ & $-1$ \\ $V$ & $2$ & $-1$ & $0$ \end{tabular} \end{center} clear that $\indicator{} \trprod W \simeq W$ always. $\eps \trprod \eps \cong \indicator{}$, $\eps \trprod V = V$. Also, $V \trprod V$ has \gls{char_rep} $\chichar_V^2$. \[ \chichar_V^2(e) = 2^2 = 4, \quad \chichar_V^2 ((123)) = (-1)^2 = 1, \quad \chichar_V^2((12)) = 0^2 = 0 \] $\chichar_V^2 = \chichar_V + \eps + \indicator{}$. In general if $\chichar_1, \ldots, \chichar_r$ are all \gls{irred} \glsref[char_rep]{characters} of $G$ and $1 \le i, j \le r$ then \[ \chichar_i \chichar_j = \sum_{k = 1}^r a_{i, j}^k \chichar_k \] for some $a_{i, j^k} \in \NN_0$. These numbers $a_{i, j}^k$ determine the ring structure on $\charring(G)$ since $\charring(G) = \bigoplus_{i = 1}^r \ZZ \chichar_i$ as a group under $+$. In fact, $V \tprod V, V \tprod V \tprod V, \ldots$ are never \gls{irred} if $\dim V > 1$. \end{example*} \subsection{Symmetric and exterior powers} For any vector space $V$ we can define \[ \sigma_V \defeq \sigma : V \tprod V \to V \tprod V \qquad \sigma(v \tvprod w) = w \tvprod v ~\forall v, w \in V \] (Exercise: prove that $V \times V \to V \tprod V$, $(v, w) \mapsto w \tvprod v$ is bilinear). Notice $\sigma^2 = \id_{V \tprod V}$, so if $\characteristic k \neq 2$, then $\sigma$ decomposes $V \tprod V$ into eigenspaces. \begin{align*} \ssquare V &\defeq \{a \in V \tprod V \st \sigma(a) = a\} &&\text{the \emph{symmetric square} of $V$} \\ \asquare V &\defeq \{a \in V \tprod V \st \sigma(a) = a\} &&\text{the \emph{exterior / alternating square} of $V$} \end{align*} In fact $V \tprod V = \ssquare V \oplus \asquare V$ is the \gls{iso_decomp} of $V \tprod V$ as a \gls{rep} of $C_2$. Suppose for now that $\characteristic k \neq 2$. \begin{lemma*} Suppose $v_1, \ldots, v_m$ is a basis for $V$. \begin{enumerate}[(i)] \item $\ssquare V$ has basis $v_i v_j \defeq \half (v_i \tvprod v_j + v_j \tvprod v_i)$ for $1 \le i \le j \le m$ ($v_j v_i = v_i v_j$ if $i > j$ allowed). \item $\asquare V$ has basis $v_i \wedge v_j \defeq \half (v_i \tvprod v_j - v_j \tvprod v_i)$ for $1 \le i < j \le m$ ($v_j \wedge v_i = -v_i \wedge v_j$ if $i \ge j$ allowed) \end{enumerate} Thus $\dim \ssquare V = \half m(m + 1)$ and $\dim \asquare V = \half m(m - 1)$. \end{lemma*} \begin{proof} It is easy to check: \begin{enumerate}[(i)] \item $v_i v_j \in \ssquare V$ for all $i, j$. \item $v_i \wedge v_j \in \asquare V$ for all $i, j$. \item The union of the claimed bases spans $V \tprod V$ and has size $m^2 = \dim V \tprod V$ \end{enumerate} So it follows from this that $V \tprod V = \ssquare V \oplus \asquare V$. Everything else follows. \end{proof} You might want to ponder \es[11]{2} in this context. \begin{proposition*} Let $(\rho, V)$ be a \gls{rep} of $G$. \begin{enumerate}[(i)] \item $V \tprod V = \ssquare V \oplus \asquare V$ as a direct sum of \glspl{rep} of $G$. \item For $g \in G$ such that $\rho(g)$ is diagonalisable (for convenience, but there exists a slightly more complicated proof not using this condition), \begin{align*} \chichar_{\ssquare V} (g) &= \half (\chichar_V(g)^2 + \chichar_V(g^2)) \\ \chichar_{\asquare V} &= \half (\chichar_V(g)^2 - \chichar_V(g^2)) \end{align*} \end{enumerate} \end{proposition*} \begin{proof} For (i) we need that $\ssquare V$ and $\asquare V$ are \Ginv, i.e. if $a \in V \tprod V$ such that $\sigma(a) = \lambda a$ for $\lambda = \pm 1$, then $\sigma(ga) = \lambda g a ~\forall g \in G$. For this it suffices to show that $\rho(g)$ and $\sigma$ commute $\forall g \in G$, i.e. $\sigma \in \GHom_G(V \tprod V, V \tprod V)$. BUt $\sigma \circ g(v \tvprod w) = \sigma( gv \tvprod gw)) = gw \tvprod gv = g(w \tvprod v) = g \sigma(v \tvprod w) ~\forall g \in G$. To prove (ii) it suffices to compute $\chichar_{\ssquare V}$ since $\text{sum of }\RHS = \chichar_V^2 = \chichar_{V \tprod V}$. Let $v_1, \ldots, v_m$ form a basis for $V$ such that $\rho(g) v_i = \lambda_i v_i$ for $1 \le i \le m$. \[ g(v_i \lambda_i) = \lambda_i \lambda_j v_i v_j \] So \[ \chichar_{\ssquare V}(g) = \sum_{1 \le i \le j \le m} \lambda_i \lambda_j \] and \[ \chichar_V(g)^2 + \chichar_V(g^2) = \left( \sum_i \lambda_i \right)^2 + \sum_j (\lambda_j)^2 = 2 \sum \lambda_i^2 + 2 \sum_{i < j} \lambda_i \lambda_j = 2 \chichar_{\ssquare V}(g) \qedhere \] \end{proof} \textbf{Exercise:} Prove the formula for $\chichar_{\asquare V}$ directly.