%! TEX root = RT.tex % vim: tw=50 % 27/10/2023 11AM \begin{flashcard}[char-proof-of-reg-rep-decomp-thm] \begin{theorem*} If $V_1, \ldots, V_r$ is a complete list of \gls{irred} \glspl{rep} of a finite group $G / \CC$, then the \gls{reg_rep} $\CC G$ decomposes as \[ \bigoplus_{i = 1}^r (\dim V_i) V_i .\] In particular, $|G| = \sum_{i = 1}^r (\dim V_i)^2$. \end{theorem*} \begin{proof} \cloze{We just need to show \[ \dim \GHom_G(\CC G, V_i) = \dim V_i ~\forall i \] But \begin{align*} \dim \GHom_G(\CC G, V_i) &= \Gip\langle \chichar_{\CC G}, \chichar_{V_i} \rangle_G \\ &= \frac{1}{|G|} \sum_{g \in G} |\{h \in G \st gh = h\}| \chichar_{V_i}(g) \\ &= \frac{1}{|G|} |G| \chichar_{V_i}(e) \\ &= \chichar_{V_i}(e) \end{align*} as required.} \end{proof} \end{flashcard} \begin{flashcard}[burnsides-lemma] \begin{proposition*}[Burnside's Lemma] \label{burnsides_lemma} Let $G$ be a finite group and $X$ a finite set with $G$-action. Then \[ \cloze{\Gip\langle \mathbbm{1}, \chichar_{\CC X} \rangle_G = \#\text{orbits of $G$ on $X$} .} \] \end{proposition*} \begin{proof} \cloze{ \begin{align*} |G| \Gip\langle \mathbbm{1}, \chichar_{\CC X} \rangle_G &= \sum_{g \in G} \chichar_{\CC X}(g) \\ &= \sum_{g \in G} |\{x \in X \st gx = x\}| \\ &= |\{(g, x) \in G \times X \st gx = x\}| \\ &= \sum_{x \in X} |\{g \in G \st gx = x\}| \end{align*} So \begin{align*} \Gip\langle \mathbbm{1}, \chichar_{\CC X} \rangle_G &= \sum_{x \in X} \frac{|\Stab_G(x)|}{|G|} \\ &= \sum_{x \in X} \frac{1}{|\Orb_G(X)|} \\ &= \sum_{\text{orbits $O_i$}} \left( \sum_{x \in O_i} \frac{1}{|O_i|} \right) \\ &= \#\text{orbits} \end{align*} } \end{proof} \end{flashcard} Note that if $X = \bigcup O_i$ is the orbit decomposition then we've seen before $\CC X = \bigoplus \CC O_i$, so \nameref{burnsides_lemma} says each $\CC O_i$ contains precisely one copy of the \gls{triv_rep} $\CC$ -- the constant functions on $O_i$. This is not so hard to prove directly (exercise). If $X, Y$ are two sets with $G$-actions then $X \times Y$ is a set with $G$-action via $g \cdot (x, y) = (g \cdot x, g \cdot y)$ for $(x, y) \in X \times Y$, $g \in G$. \begin{lemma*} If $X, Y$ are finite, then $\chichar_{\CC X \times Y} = \chichar_{\CC X} \cdot \chichar_{\CC Y}$. \end{lemma*} \begin{proof} If $g \in G$, \begin{align*} \chichar_{\CC X \times Y} (g) &= |\{(x, y) \in X \times Y \st (gx, gy) = (x, y)\}| \\ &= |\{x \in X \st gx = x\}| \cdot |\{y \in Y \st gy = y\}| \\ &= \chichar_{\CC X}(g) \chichar_{\CC Y}(g) \qedhere \end{align*} \end{proof} \begin{corollary*} If $G$ is a finite group and $X, Y$ are finite sets with $G$-actions, then \[ \Gip\langle \chichar_{\CC X}, \chichar_{\CC Y} \rangle_G = \#\text{$G$-orbits in $X \times Y$} \] \end{corollary*} \begin{proof} \begin{align*} \Gip\langle \chichar_{\CC X}, \chichar_{\CC Y} \rangle_G &= \frac{1}{|G|} \sum_{g \in G} \chichar_{\CC X}(g) \chichar_{\CC Y}(g) \\ &= \frac{1}{|G|} \sum_{g \in G} 1 \chichar_{\CC X \times Y} \\ &= \Gip\langle \mathbbm{1}, \chichar_{\CC X \times Y} \rangle_G \\ &= \#\text{$G$-orbits on $X \times Y$} &&\text{\nameref{burnsides_lemma}} \end{align*} \end{proof} \begin{remark*} If $X$ is any set with $G$-action and at least $2$-elements then $\{(x, x) \st x \in X\} \subset X \times X$ is $G$-stable and non-empty and its complement $\{(x, y) \st x, y \in X, x \neq \}$ is also non-empty and $G$-stable. \end{remark*} \begin{flashcard}[2-transitive-defn] \begin{definition*}[2-transitive action] \glsadjdefn{2trans}{$2$-transitive}{group action} \glsadjdefn[2trans]{2transly}{$2$-transitively}{group action} \cloze{ We say $G$ acts \emph{$2$-transitively} on $X$ if for all $x_1, x_2, y_1, y_2$ with $x_1 \neq y_1$, $x_2 \neq y_2$, there exists $g \in G$ such that $gx_1 = x_2$ and $gy_1 = y_2$ (i.e. $g \cdot (x_1, y_1) = (x_2, y_2)$). \fcemph{Equivalently} if the $G$-action on $X \times X$ has \fcemph{precisely} two orbits. } \end{definition*} \end{flashcard} \begin{example*} $S_n$ acts \gls{2transly} on $\{1, \ldots, n\}$ for all $n \ge 2$. If $g$ acts \gls{2transly} on $X \times X$ then by the last corollary, \[ \Gip\langle \chichar_{\CC X}, \chichar_{\CC X} \rangle_G = 2 \] So if $\chichar_{\CC X} = \bigoplus_{i = 1}^r n_i V_i$, $V_i$ \gls{irred} and pairwise non-\gls{rep_iso} then $\sum n_i^2 = 2$. That is, $\CC X$ has two non-\gls{rep_iso} \gls{irred} summands, namely the constant functions and \[ V = \{f \in \CC X \st \sum_{x \in X} f(x) = 0\} \] Then $\chichar_V$ is an irreducible \gls{char_rep} so \[ \chichar_V(g) = \chichar_{\CC X}(g) - \indicator{G}(g) = \text{(\# fixed points of $g$ on $X$)} - 1 \] Moreover, if $V$ is \gls{irred} then the action must be \gls{2trans}. \end{example*} \vspace{-1em} \textbf{Exercise:} If $G = \GL_2(\FF_p)$ then decompose the permutation \gls{rep} of $G$ coming from action of $G$ on $\FF_p \cup \{\infty\}$ by M\"obius maps: \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az + b}{cz + d} \] if $z \in \FF_p \setminus \{-d/c\}$ etc. \subsubsection*{Examples} \begin{enumerate}[(1)] \item $G = S_4$. The character table of $S_4$ is \begin{center} \begin{tabular}{c|c|c|c|c|c} $|[g_i]_G|$ & $1$ & $3$ & $8$ & $6$ & $6$ \\ \hline $g_i$ & $e$ & $(12)(34)$ & $(123)$ & $(12)$ & $(1234)$ \\ \hline $\mathbbm{1}$ & $1$ & $1$ & $1$ & $1$ & $1$ \\ $\sum$ & $1$ & $1$ & $1$ & $1$ & $1$ \\ $\chichar_3$ & $3$ & $-1$ & $0$ & $1$ & $-1$ \\ $\chichar_4$ & $3$ & $-1$ & $0$ & $-1$ & $1$ \\ $\chichar_5$ & $2$ & $2$ & $-1$ & $0$ & $0$ \end{tabular} \end{center} \begin{proof} $\mathbbm{1}, \sum$ are constructed as for $S_3$. By our discussion above, $\chichar_{\CC\{1, 2, 3, 4\}} = \mathbbm{1} + \chichar_V$ for some \gls{irred} \gls{rep} $V$ of degree $3$ and we can let $\chichar_3 = \chichar_V$ such that $\chichar_3(g) = \#\text{fixed points of $g$} - 1$. We saw on \es[2]{1} that if $\theta$ is a \repdim{1} \gls{rep} and $\rho$ is any \gls{irred} \gls{rep} then $(\rho \otimes \theta) (g) \defeq \theta(g) \rho(g)$ is an \gls{irred} \gls{rep} of $G$ and $\chichar_{\rho \otimes \theta}(g) = \chichar_\rho(g) \theta(g)$. Thus we can set $\chichar_4 = \sum \cdot \chichar_3$. We can compute $\chichar_5$ via column orthogonality \[ 1^2 + 1^2 + 3^2 + 3^2 + \chichar_5(e)^2 = 24 \] so $\chichar_5(e) = 2$, and $\sum_{i = 1}^5 \chichar_i(e) \chichar_i(e) = 0 ~\forall g \in S_4 \setminus \{e\}$. \end{proof} (In fact there is a homomorphism $S_4 \to S_3$ giving a \gls{2trans} action of $S_4$ on $\{1, 2, 3\}$ and $\chichar_5 = \chichar_{\CC\{1, 2, 3\}} - \mathbbm{1}$). \item $G = A_4$. Every \gls{irred} \gls{rep} of $S_4$ may be restricted to $A_4$ and its \gls{char_rep} values won't change. In this way we get $3$ characters of $A_4$ \[ \mathbbm{1} = \mathbbm{1}_{s_4} |_{A_4}, \quad \psi_2 = \chichar_3 |_{A_4} = \chichar_3 |_{A_4}, \quad \psi_3 = \chichar_5|_{A_4} \] It is irreducible since it has dimension 1: \[ \langle \psi_2, \psi_2 \rangle_{A_4} = \frac{1}{12} (13^2 + 3(-1)^2 + 8\cdot 0^2) = 1 \] so $\psi_2$ is irreducible. However, \[ \langle \psi_3, \psi_3 \rangle_{A_4} = \frac{1}{12} (12^2 + 3(2)^2 + 8(-1)^2) = 2 \] so $\psi_3$ decomposes into two $1$-dimensional non-\gls{rep_iso} pieces. \textbf{Exercise:} Use this to construct the character table of $A_4$. Recall $[(123)]_{S_4}$ is a union of two classes in $A_4$. \end{enumerate} \newpage \section{The Character Ring} We've already seen that the algebraic structure on $\clsfn_G$ for a finite group $G$ has \gls{rep} theoretic meaning, e.g. if $V_1, V_2$ are \glspl{rep} then \begin{align*} \chichar_{V_1 \oplus V_2} &= \chichar_{V_1} + \chichar_{V_2} \\ \chichar_0 &= 0 \\ \chichar_k &= \indicator{G} \\ \Gip\langle \chichar_{V_1}, \chichar_{V_2} \rangle_G &= \dim \GHom_G(V_1, V_2) \end{align*} We've also seen $\chichar_{\CC X \times Y} = \chichar_{\CC X} \cdot \chichar_{\CC Y}$ and if $\theta, \rho$ are \glspl{rep} such that $\theta$ is \repdim{1} then $\chichar_{\theta \oplus \rho} = \chichar_\theta \cdot \chichar_\rho ( = \theta \chichar_\rho)$. We want to generalise this to any pair of \glspl{rep} so $\chichar_{\sigma \oplus \rho} = \chichar_\sigma \cdot \chichar_\rho$.