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Start of

lecture 1
1 Introduction

What is Representation Theory?

The study of how symmetry︸ ︷︷ ︸
groups

occurs︸ ︷︷ ︸
act linearly on

in nature︸ ︷︷ ︸
finite dimensional vector spaces

.

Main goal: Understand for a given group G all the ways it can act linearly on a finite
dimensional vector space, i.e. classify them. Subproblem: What does it mean for two
such to be the “same”? How do they break into smaller pieces?

Secondary goal: Use representations to understand groups, e.g. give a proof that no
finite simple group has order with precisely two prime factors.

1.1 Linear Algebra Revision

By vector space we will always mean finite dimensional vector space (unless we say not)
over a field k. k will usually be algebraically closed and characteristic zero, for example
C, but that is because it is an easy first case, but theories are normally more general
and sometimes we’ll look at these.

Given a vector space V we define the general linear group of V

GL(V ) = Aut(V ) = {α : V ↪→ V | α is k-linear and invertible}

This is a group under composition of linear maps.

Since V is finite dimensional, there is a (linear) isomorphism kd ' V for some d ≥ 0
called the dimension. The choice of isomorphism determines a basis e1, . . . , ed of B where
e1 is the image of the i-th standard basis vector under the isomorphism.

Then
GL(B) ' {A ∈ Matd(k) | detA 6= 0}︸ ︷︷ ︸

group under matrix multiplication

This isomorphism sends a linear map α to the matrix Aij such that

α(ei) =

d∑
j=1

Ajiej

Exercise: check that this does define an isomorphism of groups.
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The choice of isomorphism also gives a decomposition of V as a direct sum of 1 dimen-
sional subspaces

V =
d⊕
i=1

kei

This decomposition is not unique unless d = 1, but the number of summands is always
dimV .

1.2 Group Representation – Definitions and Examples

Recall that an action of a group G on a set X is a function · : G×X → X, (g, x) 7→ g ·x
such that

(i) e · x = x ∀x ∈ X;

(ii) g · (h · x) = (gh) · x ∀g, h ∈ G, x ∈ X.

Recall also that to define an action is equivalent to defining a group homomorphism
ρ : G→ S(X) where S(X) is the symmetric group of X i.e. the set of bijections X → X
with operation composition of functions via ρ(g)(x) = g · x for all g ∈ G, x ∈ X.

Definition (Representation). A representation of a group G on a vector space V
is a group homomorphism ρ : G→ GL(V ).

Notation. By abuse of notation, we’ll sometimes call the representation ρ, some-
times (ρ, V ) and sometimes just V .

Defining a representation of G in V corresponds to assigning a linear map ρ(g) : V → V
to each g ∈ G such that

(i) ρ(e) = idV

(ii) ρ(gh) = ρ(g)ρ(h)

(iii) ρ(g−1) = ρ(g)−1

Exercise: Show that if condition (ii) holds then (i) is equivalent to (iii). Moreover,
both can be replaced by ρ(g) ∈ GL(V ) ∀g ∈ G.

Given a basis for V a representation can be viewed as an assignment of matrix ρ(g) in
MatdimV (k) to each g ∈ G such that (i), (ii) and (iii) hold.
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Definition (Degree of representation). The degree of ρ or dimension of ρ is dimV .

Definition (Faithful representation). ρ is faithful if ker ρ = {e}.

Examples

(1) Let G be any group and V = k. Then ρ : G → GL(k), g 7→ id is called the trivial
representation.

(2) Let G = C2 = ({±1}, ·), V = R2 then

ρ(1) =

(
1 0
0 1

)

ρ(−1) =
(
−1 0
0 1

)
defines a representation of G on V since ρ(−1)2 = ρ(1).

(3) Let G = (Z,+), V a vector space and ρ a representation of G on V . Necessarily
ρ(0) = idV , ρ(1) : V ↪→ V is an invertible linear map α, say ρ(1+1) = ρ(1) = α2. By
induction ρ(n) = αn for all n ≥ 0, and for n < 0, ρ(n) = ρ(−n)−1 = (α−n)−1 = αn

so ρ(n) = αn for all n ∈ Z.

Notice conversely for any α ∈ GL(V ), ρ(n) = αn ∀n ∈ Z defines a representation of
G on V . So

{representations of G on V } 1−1↔ GL(V )

ρ 7→ ρ(1)

(4) Let G = (Z/NZ,+) and ρ : G → GL(V ) a representation. As before ρ(n +NZ) =
ρ(1+NZ)n for all n ∈ Z. But now ρ(N +NZ) = ρ(0+NZ) = idV so ρ(1+NZ)N =
idV . So

{representations of (Z/NZ,+) on V } 1−1↔ {α ∈ GL(V ) | αN = id}
ρ 7→ ρ(1 +NZ)

(5) G = S3 = S({1, 2, 3}) and V = R2. Take an equilateral triangle in R2 centred at the
origin and labelled vertices 1, 2, 3.
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Then G acts on the triangle by permuting vertices. Each such symmetry induces a
linear transformation of R2 = V . For example g = (12) induces reflection in the line
through the origin and 3, and g = (123) induces a rotation by 2π

3 .

Exercise: Choose a basis for R2. Write down the coordinates of the vertices of
triangle. For g ∈ S3 write down the matrix of the induced linear map. Check it
defines a representation. Would a different basis have made the calculation easier?

Start of

lecture 2

(6) Given a finite set X we can form the vector space

kX := {f : X → k}

with pointwise operations. This has a basis 〈δx : x ∈ X〉 where δx(y) = δxy for
y ∈ X. If f ∈ kX then f =

∑
x∈X f(x)δx.

If a group G acts on X, we can define

ρ : G→ Aut(kX)ρ(g)(f)(x) = f(g−1x) ∀f ∈ kX, g ∈ G, x ∈ X

If is easy to check ρ(g) is linear for all g ∈ G and ρ(e) = idkX . So it suffices to
show ρ(gh) = ρ(g)ρ(h) ∀g, h ∈ G. To show this, note that for all g, h ∈ G, f ∈ kX,
x ∈ X, we have

ρ(gh)(f)(x) = f(h−1g−1x)

= ρ(h)(f)(g−1x)

= ρ(g)ρ(h)(f)(x)

as required. Note that for g ∈ G, x, y ∈ G,

(ρ(g)δx)(y) = δx(g
−1y) = δx,g−1y = δgx,y = δgx(y)

So by linearity ρ(g) (
∑
f(x)δx) =

∑
x∈X f(x)δgx.

7
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(7) In particular if G is finite then G acts on itself by left multiplication G × G → G,
(g, h) 7→ gh. This induces a representation of G on kG, called the regular repre-
sentation. If g ∈ G then ρ(g)(δe) = δg so ρ(g) = e ⇐⇒ g = e. So the regular
representation is always faithful.

(8) If (ρ, V ) is a representation of G we can define a representation ρ∗ of G on V ∗ as
follows

ρ∗(g)(θ)(v) = θ(g−1v) ∀g ∈ G, θ ∈ V ∗, v ∈ V

ρ∗(g) can be viewed as the adjoint of ρ(g)−1 and recall that with respect to a pair of
dual bases for V and V ∗, the matrix of the adjoint of a linear map is the transpose of
the matrix of the map. So if V = kd so ρ : G→ GLd(k) then ρ∗(g) = (ρ(g)−1)>. This
is a homomorphism because GLd(k)→ GLd(k), A 7→ (A−1)> is a homomorphism.

(9) More generally, if (ρ, V ) and (σ,W ) are two representations ofG then (τ,Homk(V,W ))
is a representation of G as follows

τ(g)(α) = σ(g) ◦ α ◦ ρ(g)−1 ∀g ∈ G,α ∈ Homk(V,W )

Exercise: check the details (this is on Example Sheet 1).

Note that ifW = k is the trivial representation then we recover the previous example.
Moreover if V = kn, W = km with the standard bases (so Homk(V,W ) = Matm,n(k))
then τ(g)(A) = σ(g)Aρ(g)−1 for all g ∈ G, A ∈ Matm,n(k).

(10) If ρ : G→ GL(V ) is a representation (ofG) and θ : H → G is a group homomorphism
then ρθ : H → GL(V ) is a representation off H. If H ≤ G and θ is the inclusion
map then we call this the restriction of ρ to H.

1.3 The Category of Representations

If ρ : G → GL(V ) is a representation and ϕ : V → W is a homomorphism of vector
spaces then σ : G→ GL(W ) defined by σ(g) = ϕ ◦ ρ(g) ◦ ϕ−1 for all g ∈ G.

Definition (Isomorphic Representations). We say that ρ : G → GL(V ) and
σ : G→ GL(W ) are isomorphic representations if there exists ϕ : V →W a k-linear
isomorphism such that

σ(g) = ϕ ◦ ρ(g) ◦ ϕ−1 ∀g ∈ G

We say ϕ intertwines ρ and σ.

Note that:
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(1) idV intertwines ρ and ρ.

(2) If ϕ intertwines ρ and σ then ϕ−1 intertwines σ and ρ.

(3) If ϕ intertwines ρ and σ and ϕ′ intertwines σ and τ , then ϕ′ ◦ϕ intertwines ρ and τ .

Therefore this definition of isomorphism is an equivalence relation.

Since every vector space is isomorphic to kd for some d ≥ 0, every representation is
isomorphic to a matrix representation.

If ρ, σ : G→ GLd(k) are matrix representations of the same degree then an intertwining
map from ρ to σ is an invertible matrix P ∈ GLd(k) such that

σ(g) = Pρ(g)P−1 ∀g ∈ G

Thus matrix representations are isomorphic precisely if they represent the same family
of maps with respect to different bases.

Example.

(1) If G = {e} then (ρ, V ) and (σ,W ) are isomorphic if and only if dimV = dimW .

(2) If G = (Z,+), then (ρ, V ) and (σ,W ) are isomorphic if and only if there are
bases for V and W such that ρ(1) and σ(1) are the same matrix. So

{representations of (Z,+)}/ ∼↔ {conjugacy classes of invertible matrices}

If k = C the RHS is classified by Jordan Normal Form (more generally rational
canonical form).

(3) If G = C2 = ({±1}, ·) then

{representations of C2}/ ∼↔ {conjugacy classes of matrices A such that A2 = I}

Since the minimal polynomial of A in RHS divides X2 − 1 = (X − 1)(X + 1)
(which has distinct roots if characteristic of k is not 2), every such matrix is
conjugate to a diagonal matrix and all diagonal entries are 1 or −1.

Exercise: Show that there are precisely n+1 isomorphism classes of represen-
tations of C2 of degree n (for any field of characteristic not equal to 2).

(4) If G acts on sets X and Y and there is a bijection f : X → Y such that
g · (f(x)) = f(g · x) for all g ∈ G, x ∈ X, then f induces an isomorphism of
representations f̃ : kX → kY , f̃(θ)(y) = θ(f−1y).

Exercise: check this.
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Start of

lecture 3 Definition (Subrepresentation). Suppose ρ : G→ GL(V ) is a representation and
W ≤ V is a k-linear subspace. Then we say W is G-invariant if ρ(g)(W ) ⊂ W for
all g ∈ G.

In this case we can define a representation (ρW ,W ) via

ρW (g)(w) = ρ(g)(w) ∀g ∈ G,w ∈W.

We call (ρW ,W ) a subrepresentation of W .

Definition (Proper Subrepresentation). If W 6= 0 and W 6= V we say W is a
proper subrepresentation.

Definition (Irreducible Representation). We say V 6= 0 is irreducible or simple if
V has no proper subrepresentations.

Examples

(1) Any 1-dimensional representation of any group is irreducible.

(2) If G = C2, ρ : G→ GL2(k), with

ρ(−1) =
(
−1 0
0 1

)
(char k 6= 2). Then (ρ, k2) has exactly 2 proper subrepresentations, namely〈(

1
0

)〉
,

〈(
0
1

)〉

Proof. It is easy to see that two given subrepresentations are G-invariant, since the
vectors are ρ(−1)-eigenvectors. Conversely, any proper subrepresentation must have
dimension 1, so is spanned by an eigenvector of ρ(−1) and the eigenspaces of ρ(−1)
are those described above.

(3) If G = C2 then any simple representation of G has dimension 1.
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Proof. Suppose ρ : G→ GL(V ) is an irreducible representation of G. The minimal
polynomial of ρ(−1) divides X2 − 1 = (X − 1)(X + 1) since ρ(−1)2 = idV . So it
has a linear factor and ρ(−1) has a nonzero eigenvector v. Then ρ(−1)〈v〉 ⊆ 〈v〉 but
also ρ(1)〈v〉 ⊆ 〈v〉. So 〈v〉 is a G-invariant subspace of V . As V is irreducible and
〈v〉 6= 0, 〈V 〉 = V has dimension 1.

Note we see that if char k 6= 2 there are precisely 2 simple representations of C2 up
to isomorphism and only 1 if char k = 2.

(4) If G = D6, then every complex irreducible representation has degree ≤ 2.

Proof. Let ρ : G → GL(V ) be an irreducible representation of G. Let r be a non-
trivial rotation in G and s a reflection in G so r3 = e = s2, srs = r−1 and {r, s}
generate G.

Since ρ(r)3 = idV , the minimal polynomial of ρ(r) divides X3 − 1, so ρ(r) has an
eigenvector v with eigenvalue λ such that λ3 = 1.

Consider W := 〈v, ρ(s)v〉 ≤ V , so dimW ≤ 2. Now ρ(s)ρ(s)v = ρ(s2)v = v, and
ρ(r)ρ(s)v = ρ(s)ρ(r)−1v = λ−1ρ(s)v, so ρ(s)W ≤W and ρ(R)W ≤W . Since r and
s generate G, it follows W is a G-invariant subspace of V .

So if V is irreducible, must have W = V , so dimV ≤ 2 as required.

Exercise: Show that there are precisely 3 irreducible representations of D6 up to
isomorphism: two of degree 1 and one of degree 2. (Hint: consider proof above and
split into cases for each value of λ).

Definition (Quotient Representation). If (ρ, V ) is a representation of G and W ≤
V is a G-invariant subrepresentation then we can define a quotient representation
(ρV/W , V/W ) via

ρV/W (g)(v +W ) = ρ(g)(v) +W.

(This is well-defined since ρ(g)(W ) ⊂ W∀g ∈ G means that the choice of coset
representative doesn’t matter).

We’re going to start dropping the ρ now where it doesn’t cause confusion.
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Definition (G-linear map). If (ρ, V ) and (σ,W ) are two representations of G we
say a k-linear map ϕ : V → W is G-linear if ϕ ◦ g = g ◦ ϕ for all g ∈ G, i.e.
ϕ ◦ ρ(g) = σ(g) ◦ ϕ. We write

HomG(V,W ) = {ϕ ∈ Homk(V,W ) | ϕ is G-linear}

a k-vector subspace of Homk(V,W ).

(1) ϕ ∈ Homk(V,W ) is an intertwining map if and only if ϕ is a bijection and ϕ ∈
HomG(V,W ), since ϕ ◦ ρ(g) = σ(g) ◦ ϕ ⇐⇒ ϕ ◦ ρ(g) ◦ ϕ−1 = σ(g).

(2) If W ≤ V is a G-subrepresentation then the natural inclusion map

ι :W → V,w 7→ w ∈ HomG(W,V )

and the natural projection map

π : V → V/W, v 7→ v +W ∈ HomG(V, V/W ).

(3) Recall that Homk(V,W ) is a representation of G via g · ϕ = g ◦ ϕ ◦ g−1 for g ∈ G,
ϕ ∈ Homk(V,W ) and ϕ ∈ HomG(V,W ) if and only if g · ϕ = ϕ for all g ∈ G.

Lemma. If U , V andW are representations of a groupG with ϕ1 ∈ Homk(V,W ),
ϕ2 ∈ Homk(U, V ) then

g · (ϕ1 ◦ ϕ2) = (g ◦ ϕ1) ◦ (g ◦ ϕ2)∀g ∈ G.

In particular, if:

• ϕ1 ∈ HomG(V,W ) then g · (ϕ1 ◦ ϕ2) = ϕ1 ◦ (g · ϕ2) for all g ∈ G

• ϕ2 ∈ HomG(U, V ) then g · (ϕ1 ◦ ϕ2) = (g · ϕ1) ◦ ϕ2 for all g ∈ G

• ϕ1 ∈ HomG(V,W ) and ϕ2 ∈ HomG(U, V )

Then ϕ1 ◦ ϕ2 ∈ HomG(U,W ).

Proof. With the notation in the statement,

(g · ϕ1) ◦ (g ◦ ϕ2) = (g ◦ ϕ1 ◦ g−1) ◦ (g ◦ ϕ2 ◦ g−1) = g ◦ (ϕ1 ◦ ϕ2) ◦ g−1 = g · (ϕ1 ◦ ϕ2)

Everything else follows immediately.
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Lemma (First Isomorphism for Representations). Suppose V and W are two rep-
resentations of G and ϕ ∈ HomG(V,W ). Then

(i) kerϕ is a subrepresentation of V ;

(ii) imϕ is a subrepresentation of W ;

(iii) the linear isomorphism ϕ : V/ kerϕ → imϕ given by the first isomorphism
theorem for vector spaces is an intertwining map. Thus V/ kerϕ and imϕ are
isomorphic as representations.

Proof. (i) If v ∈ kerϕ and g ∈ G then ϕ(g · v) = g · ϕ(v) = g · 0 = 0. So g · v ∈ kerϕ.

(ii) If w = ϕ(v) ∈ imϕ and g ∈ G then g · w = g · ϕ(v) = ϕ(g · v) ∈ imϕ.

(iii) We know ϕ is given by the formula ϕ(v + kerϕ) = ϕ(v). Then g ◦ ϕ(v + kerϕ) =
g · ϕ(v) = ϕ(g · v) = ϕ(g(v + kerϕ)).

Proposition. Suppose ρ : G → GL(V ) and W ≤ V is a subspace. Then the
following are equivalent

(i) W is a subrepresentation of V .

(ii) There exists a basis of V such that v1, . . . , vr is a basis of W and each ρ(g)
with respect to this basis is block upper triangular:

(iii) For every basis v1, . . . , vd of V such that v1, . . . , vr is a basis of W each ϕ(g)
with respect to the basis is block upper triangular as in (ii).

13



Proof. Linear Algebra Example Sheet last year.
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2 Complete Reducibility and Maschke’s Theorem

Question: What can a representation V of a group G be decomposed as a direct sum
of simple subrepresentations?

Example.

(1) If G = {e} the answer is always as seen in lecture 1 since a simple subrepresen-
tation is precisely a 1 dimensional subspace.

(2) If G = C2 and V = R2,

ρ(−1) =
(
−1 0
0 1

)
we’ve seen that the proper subrepresentations of V are〈(

1
0

)〉
,

〈(
0
1

)〉
and

R2 =

〈(
1
0

)〉
⊕
〈(

0
1

)〉
is the only such decomposition.

(3) If G = (Z,+) and ρ : G→ GL2(k) is determined by

ρ(1) =

(
1 1
0 1

)
then there is precisely one proper subrepresentation〈(

1
0

)〉
as any such must be spanned by an eigenvector. So this cannot be decomposed
in this way.

15



Definition (direct sum of representations). We say a representation V is a di-
rect sum of (Vi)

k
i=1 if each Vi is a subrepresentation of V and V =

⊕k
i=1 Vi as

vector spaces (recall direct sum notation from Linear Algebra). Given a family of
representations (ρi, Vi)

k
i=1 of G, we may define the (external) direct sum to be the

representation of G on the vector space

V :=

k⊕
i=1

Vi := {(vi)ki=1 | vi ∈ Vi}

with pointwise operations via

ρ(g)((vi)) = (ρi(g)vi)

We write

(ρ, V ) :=

k⊕
i=1

(ρi, Vi) =

k⊕
i=1

ρi =

k⊕
i=1

Vi

Examples

(1) Suppose G acts on a finite set X and X = X1 ∪X2 with X1 ∩X2 = ∅ and X1, X2

both G stable (g · x ∈ Xi if x ∈ Xi, g ∈ G). Then kX ' kXi ⊕ kX2 under

f 7→ (f |X1 , f |X2)

Internally

kX = {f | f(x) = 0 ∀x ∈ X2} ⊕ {f | f(x) = 0 ∀x ∈ X1}

More generally if the G-action decomposes into orbit X =
⋃r
i=1Oi, then

kX =

r⊕
i=1

1Oi(kX) '
r⊕
i=1

kOi

where 1Oi : kX → kX given by

1Oi(f)(x) =

{
f(x) x ∈ Oi
0 otherwise

(2) If G acts transitively on a finite set X then

U :=

{
f ∈ kX

∣∣∣∣∣ ∑
x∈X

f(x) = 0

}
and W := {f ∈ kX | f is constant}

are subrepresentations if |X| > 1.
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Proof. If f ∈ U and g ∈ G∑
x∈X

(g · f)(x) =
∑
x∈X

f(g−1x) =
∑
x∈X

f(x) = 0

since x 7→ g−1x defines a permutation of X. So g · f ∈ U and U is G-invariant.
Similarly if f ∈ W then there exists λ ∈ k such that for all x ∈ X, f(x) = λ and
(g · f)(x) = f(g−1x) = λ. If char k = 0 then kX = U ⊕ W is a direct sum of
representations. What happens if char k = p > 0?

Proposition. Suppose ρ : G → GL(V ) is a representation and V = U ⊕ W as
vector spaces. Then the following are equivalent:

(i) V = U ⊕W as representations

(ii) There is a basis v1, . . . , vd of V such that v1, . . . , vr is a basis of U and
vr+1, . . . , vd is a basis of W and the corresponding matrices ρ(g) are block
diagonal

(iii) For every basis v1, . . . , vd of V such that v1, . . . , vr is a basis of U and vr+1, . . . , vd
is a basis of W , the corresponding matrices ρ(g) are all block diagonal as in
(ii).

Proof. Think about it!

Warning. ρ : C2 → GL2(R), ρ(−1) =

(
−1 2
0 1

)
defines a representation of C2

(check). The representation on R2 decomposes as a direct sum of subrepresentations
〈e1〉 and 〈e1 + e2〉 even though ρ(−1) is not diagonal.
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Definition (completely reducible). We say a representation V of a group G is
completely reducible if

V '
r⊕
i=1

Vi

for some irreducible representation Vi.

We’ve seen that (Z,+) has representations that are not completely reducible, given by

ρ(1) =

(
1 1
0 1

)

Lemma. Suppose (ρ, V ) is a representation such that for every pair of G-invariant
subspaces W1,W2 ≤ V such that W1 ≤ W2, there is a G-invariant complement to
W1 in W2.

Then V is completely reducible.

Proof. By induction on dimV . If V = 0 or V is irreducible the result is clear. Otherwise
V has a proper G-invariant subspace W . Then by assumption W has a G-invariant
complement U in V so V = U ⊕W as representations.

Now dimU,dimW < dimV and U and W inherit the condition on V . So by induction
hypothesis,

U ∼=
r⊕
i=1

Ui and W ∼=
s⊕
j=1

Wj

for some simple representations U1, . . . , Ur and W1, . . . ,Ws. Then

V '
r⊕
i=1

Ui ⊕
s⊕
j=1

Wj

as required.

Recall, if V is a C-vector space then a Hermitian inner product is a positive definite
Hermitian sesquilinear form, i.e. (•, •) : V × V → C such that

(i) Sesquilinear:

(ax+ by, z) = a(x, z) + b(y, z) ∀x, y, z ∈ V, a, b ∈ C

(x, ay + bz) = a(x, y) + b(x, z) ∀x, y, z ∈ V, a, b ∈ C
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(ii) (x, y) = (y, x) for all x, y ∈ V (Hermitian)

(iii) (x, x) > 0 ∀x ∈ V \ {0} (positive definite)

The standard inner product on Cn is given by

(x, y) =

n∑
i=1

xiyi

Recall the unitary group U(n) is the subgroup of GLn(C) given by

U(n) = {A ∈ GLn(C) | A>A = I}
= {A ∈ GLn(C) | (Ax,Ay) = (x, y) ∀x, y ∈ Cn}

Definition (unitary representation). A C representation of a group G is unitary if
there exists a basis e1, . . . , en of V so that the corresponding matrix representation
ρ : G→ GLn(C) has image contained in U(n).

Start of

lecture 5 Definition (G-invariant inner product). A Hermitian inner product on a repre-
sentation V of G is G-invariant if (gx, gy) = (x, y) for all g ∈ G, x, y ∈ V .

Equivalently if (gx, gx) = (x, x) ∀g ∈ G, x ∈ V .

Proposition. A representation (ρ, V ) of G is unitary if and only if V has a G-
invariant inner product.

Proof. If (ρ, V ) is contrary let e1, . . . , en be a basis with respect to which each ρ(g) ∈
U(n). Now, ∑

i

λiei,
∑
j

µjej

 =
∑
i

λiµi

is a G-invariant inner product on V .

Conversely, if V has a G-invariant inner product(•, •), we can find an orthonormal basis
v1, . . . , vn of V with respect to (•, •). Then∑

i

λivi,
∑
j

µjvj

 =
∑
i

λiµi ∀λ, µ ∈ Cn
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i.e. (•, •) is the standard inner product with respect to v1, . . . , vn, so since it is G-
invariant each ρ(g) is unitary with respect to this basis.

Note subrepresentations of unitary representations are thus unitary since we can restrict
a G-invariant inner product.

Theorem. Suppose (ρ, V ) is a unitary representation of a group G. Then every
subrepresentation W of V has a G-invariant complement. Thus V is completely
reducible.

Proof. Since V is unitary it has a G-invariant inner product (•, •). If W is a subrepre-
sentation then

W⊥ = {v ∈ V | (v, w) = 0 ∀w ∈W}

is a vector space complement to W in V by standard linear algebra. Moreover, if g ∈ G,
v ∈W⊥ and w ∈W then

(gv, w) = (v, g−1w) = 0

since g−1w ∈W , so gv ∈W⊥ and W⊥ is a subrepresentation as required.

The last part follows from lemma proved last time.

Theorem (Maschke’s Theorem). Let G be a finite group and (ρ, V ) is a represen-
tation of G over k, a field of characteristic zero. Suppose W ≤ V is a subrepresen-
tation. Then W has a G-invariantcomplement in V . In particular, V is completely
reducible.

Key idea: If (ρ, V ) is a representation of a finite group G over a field k then for all
v ∈ V , ∑

g∈G
g · v ∈ V G = {v ∈ V | g · v = v ∀g ∈ G} ≤ V

Proof of Key idea. If h ∈ G,

h

∑
g∈G

g · v

 =
∑
g∈G

(hg) · v =
∑
g′∈G

g′ · v

since G→ G, g 7→ hg is a permutation of G and h : V → V is linear.
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Proposition (Weyl’s unitary trick). If V is a C-representation of a finite group G
then V has a G-invariant inner product. Thus Maschke’s Theorem is true over C.

Proof. Pick any Hermitian inner product 〈•, •〉 on V . Then we can define a new inner
product on V via

(x, y) =
∑
g∈G
〈gx, gy〉

It is easy to see that (•, •) is a Hermitian inner product because 〈•, •〉 is since, for
example, if a, b ∈ C and x, y, z ∈ V then

(x, ay + bz) =
∑
g∈G
〈gx, g(ay + bz)〉

=
∑
g∈G
〈gx, ag(y) + bg(z)〉

=
∑
g∈G

(a〈gx, gy〉+ b〈gx, gz〉)

= a(x, y) + b(x, z)

But now if h ∈ G and x, y ∈ V ,

(hx, hy) =
∑
g∈G
〈ghx, ghy〉 =

∑
g′∈G
〈g′x, g′y〉 = (x, y)

since g 7→ gh is a permutation of G.

Remark. This proof can be phrased as follows:

(i) Herm(V ) = {Hermitian sesquilinear forms} is naturally an R-vector space.

(ii) G → Aut(Herm(V )), g · (•, •)|(x,y) = (g−1x, g−1y) defines an R-linear repre-
sentation of G.

(iii) All R>0-linear combinations of positive definite elements of Herm(V ) are pos-
itive definite.

(iv) The key idea transforms an inner product into a G-invariant one.

It follows that studying C-representations of a finite group is the same as studying
unitary representations of the group.
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Corollary. Every finite subgroup of GLn(C) is conjugate to a subgroup of U(n).

Proof. If G ≤ GLn(C) then the inclusion map ρ : G → GLn(C) is a representation. By
the unitary trick, there exists a basis for Cn with respect to which each ρ(g) ∈ U(n), i.e.
∃P ∈ GLn(C) such that ∀g ∈ G, Pρ(g)P−1 ∈ U(n).

We now generalise to all char 0 fields.

Proof of Maschke’s Theorem. Idea: if π : V → V is a projection, i.e. π2 = π, then V =
Imπ⊕kerπ as vector spaces. If π is G-linear then kerπ and Imπ are subrepresentations.
So Imπ has a G-invariant complement. So we pick a projection onto W and average it.

Let π : V → V be any k-linear projection onto W (so π(w) = w for all w ∈ W and
Imπ =W ). Recall that Homk(V, V ) is a representation of G via g ·ϕ = g ◦ϕ ◦ g−1. Let
πG = 1

|G|
∑

g∈G(g ◦ π) ∈ HomG(V, V ) by the key idea.

Moreover, ImπG ≤W since g ◦ πg−1(v) ∈W for all v ∈ V, g ∈ G and

πG(v) =
∑
g∈G

1

|G|
g ◦ π ◦ g−1(v)

and if w ∈W then

πG(w) =
1

|G|
∑
g∈G

g ◦ π ◦ g−1(w) =
1

|G|
∑
g∈G

g ◦ g−1(w) = w

since g−1(w) ∈W ∀g ∈ G,w ∈W . So πG is a G-invariant linear projection onto W and
kerπ is a G-invariant complement to W in V .
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Remark.

(1) We can explicitly compute πG and kerπG via formula

πG =
1

|G|
∑
g∈G

g · π

(2) Notice we only used char(k) = 0 when we divided by |G|. So in fact the result
holds whenever char(k) - |G|.

(3) As an extension of our key idea, for any G-representation V (and char k - |G|),

π : v 7→ 1

|G|
∑
g∈G

gv

is a projection in HomG(V, V ) onto V G. Notice dimV G = Trπ = 1
|G|
∑

g∈GTr(g)
since Tr is linear.

Start of

lecture 6 Question: Suppose
V '

⊕
i∈I

Vi '
⊕
j∈J

Wj

with Vi, Wj are irreducible representations of G. Can these decompositions be different?
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3 Schur’s Lemma

Recall that if V is a vector space then Aut(V ) = GLdimV (k).

Theorem (Schur’s Lemma). Suppose V and W are irreducible representations of
a group G. Then

(i) Every ϕ ∈ HomG(V,W ) is either 0 or an isomorphism;

(ii) if k is algebraically closed then dimHomG(V,W ) is 0 or 1.

Proof.

(i) Note if ϕ ∈ HomG(V,W ) \ {0} then kerϕ � V is a G-invariant subspace. So as
V is irreducible, kerϕ = 0. Similarly 0 6= Imϕ ≤ W is a G-invariant subspace so
Imϕ =W . Then by First Isomorphism for Representations, ϕ is an isomorphism.

(ii) Suppose ϕ1, ϕ2 ∈ HomG(V,W ) \ {0}. By (i), ϕ1 is an isomorphism such that
ϕ−1
1 ◦ ϕ2 ∈ HomG(V, V ). But then as k is algebraically closed, every element of

Homk(V, V ) has an eigenvalue. In particular, ∃λ ∈ k such that ker(ϕ−1
1 ◦ ϕ2 −

λidV ) 6= 0. But ϕ−1
1 ◦ ϕ2 − λidV ∈ HomG(V, V ). So ker(ϕ−1

1 ◦ ϕ2 − λidV ) is G-
invariant so is equal to V (since V irreducible), i.e. ϕ−1

1 ◦ϕ2 = λidV and ϕ2 = λϕ1,
i.e. HomG(V,W ) = kϕ1.

This says that in particular, HomG(V, V ) = k (such that k = k), so an irreducible
representation is rigid in the same sense that a 1-dimensional vector space is rigid since
their automorphism groups are the same.

Proposition. If V, V1, V2 are representations of G then

(a) HomG(V, V1 ⊕ V2) ' HomG(V, V1)⊕HomG(V, V2)

(b) HomG(V1 ⊕ V2, V ) ' HomG(V1, V )⊕HomG(V2, V )

Proof.

(a) There are natural G-linear inclusion maps ιi : Vi → V1⊕V2 for i = 1, 2. These induce
by post-composition G-linear maps Homk(V, Vi) → Homk(V, V1 ⊕ V2), f 7→ ιi ◦ f .
Together these give a linear isomorphism

Homk(V, V1)⊕Homk(V, V2)→ Homk(V, V1 ⊕ V2) (f1, f2) 7→ ι1f1 + ι2f2
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Since ι1, ι2 are G-linear, this is an intertwining map

g · (ι1f1 + ι2f2) = ι1 ◦ (g · f1) + ι2 ◦ (g · f2)

Since in general if ϕ : U → W is an intertwining map between representations of G
it induces an isomorphism on G-fixed points since g · (ϕ(u)) = ϕ(u) ⇐⇒ g · u = u
(ϕ injective). It follows that there is an induced isomorphism as in (a).

(b) Since the natural projection maps πi : V1 ⊕ V2 → Vi, (v1, v2) 7→ vi for i = 1, 2 are
also G-linear and induce a G-linearisomorphism

Homk(V1, V )⊕Homk(V2, V )→ Homk(V1 ⊕ V2, V ), (f1, f2) 7→ f1 ◦ π1 + f2 ◦ π2

and again taking G-invariants gives the result.

Corollary. If V '
⊕

i∈I Vi and W '
⊕

j∈JWj then

HomG(V,W ) =
⊕
i∈I

⊕
j∈J

HomG(Vi,Wj)

Proof. This follows from the previous proposition and a simple induction argument.

Corollary. If k = k and V '
⊕r

i=1 Vi is a decomposition of V as a direct sum of
simple representations then for each simple representation W of G

|{i : Vi 'W}| = dimHomG(V,W ) = dimHomG(W,V ).

and does not depend on the choice of decomposition.

Proof. By the last result dimHomG(V,W ) =
⊕r

i=1HomG(Vi,W ) so dimHomG(V,W ) =∑r
i=1 dimHomG(Vi,W ) and similarly dimHomG(W,V ) =

∑r
i=1 dimHomG(W,Vi). Thus

it suffices to show

dimHomG(Vi,W ) = dimHomG(W,Vi) =

{
1 W ' Vi
0 W 6' Vi

This is part of the statement of Schur’s Lemma when k = k.

Exercise for enthusiasts: Give a version of this corollary when k 6= k.
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Important question: How can we compute these numbers dimHomG(V,W )? Note
our final remark last lecture may help us at least when char(k) = 0 since it said
dimV G = 1

|G|
∑

g∈GTr ρ(g). So we need to understand these traces for the represen-
tation Homk(V,W ).

Corollary. If G is an abelian group then every irreducible C-representation of G
has degree 1.

Proof. Let (ρ, V ) be a complex irreducible representation of G. For each g ∈ G,
ρ(g)ρ(h) = ρ(h)ρ(g) for all h ∈ G. So ρ(g) ∈ HomG(V, V ) = CidV by Schur’s Lemma.
Now if v ∈ V \ {0} then ρ(g)〈v〉 ≤ 〈v〉 ∀g ∈ G so 〈v〉 is a G-invariant subspace of V , so
〈v〉 = V since V is irreducible.

Corollary. If G is a finite group with a faithful irreducible representation over an
algebraically closed field k, then Z(G) is cyclic.

Proof. Let (ρ, V ) be a faithful irreducible representation of G and z ∈ Z(G). Then
ρ(z)ρ(g) = ρ(g)ρ(z) for all g ∈ G, i.e. ϕ(z) ∈ HomG(V, V ) = kidV by Schur’s Lemma.
We can write ρ(z) = λzidV for λz ∈ k, and λz1z2 = λz1 · λz2 for all z1, z2 ∈ Z(G), and
λe = 1. So Z(G) → k×, z 7→ λz is a faithful representation of Z(G) since V is faithful,
i.e. Z(G) is isomorphic to a finite subgroup of k×, and any such subgroup is cyclic.

Example. G = C4 = 〈x〉. 1-dimensional C-representations of G are given by

1 x x2 x3

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i
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Example. C2 ×C2 = 〈x〉 × 〈y〉. 1-dimensional C-representations of G are given by

1 x y xy

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

Start of

lecture 7 Proposition. If G is a finite abelian group then G has exactly |G| irreducible
C-representations.

Proof. We saw last lecture that all irreducible representations of an abelian group have
degree 1.

S = {simple representations of G}/ ∼↔ Hom(G,C×)

Moreover, if G = H ×K, then

Hom(G,C×)↔ Hom(H,C×)×Hom(K,C×) ϕ 7→ (ϕ|H , ϕ|K)

(need C× is abelian to get surjectivity). Now by structure theorem for finite abelian
groups, G ' Cn1 × · · · ×Cnr for some n1, . . . nr ∈ N. So by a simple induction argument
we can reduce to the case where G is cyclic, G ∼= Cn = 〈x〉 say.

Then ρ ∈ Hom(G,C×) is determined by ρ(x) and ρ(x)n = 1, i.e. ρ(x) is an n-th
root of unity. Moreover, for j = 0, . . . , n − 1, xk 7→ e2πijk/n defines a 1-dimensional
representation of G.

Lemma. If (ρ1, V1) and (ρ2, V2) are non-isomorphic 1-dimensional representations
of a finite group G, then ∑

g∈G
ρ1(g

−1)ρ2(g) = 0

(Note ρ1(g−1) = ρ1(g)
−1) = ρ1(g) since ρ1(g)j = 1 for some j if k = C).

Proof. We’ve seen that Homk(V1, V2) is a representation ofG via g·ϕ = ρ2(g)◦ϕ◦ϕ1(g
−1).

Moreover, ∑
g∈G

g · ϕ ∈ HomG(V1, V2) = 0
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by our key idea from lecture 5 and Schur’s Lemma. Pick an isomorphic ϕ ∈ Homk(V1, V2)
and then

0 =
∑
g∈G

ρ2(g)ϕρ1(g
−1) =

∑
g∈G

ρ1(g
−1)ρ2(g)

ϕ

So as ϕ is injective, we’re done.

Definition (isotypic component). If V is a completely reducible representation
of a group G and W is any simple representation of G, the W -isotypic component
of V is the smallest subrepresentation of V containing all subrepresentations of V
isomorphic to W .

This exists since if (Vi)i∈I are subrepresentations of V containing all subrepresentations
of V isomorphic to W then

⋂
i∈I Vi is another (or we can simply take the vector space

sum of all subrepresentations isomorphic to W ).

Definition (unique isotypical decomposition). We say V has a unique isotypical
decomposition if V is the direct sum of its W -isotypic component as W goes over
all simple representations of G (up to isomorphism).

Corollary. If G is a finite abelian group, then every C-representation of V has a
unique isotypical decomposition.

Proof. For each homomorphism θi : G → C×, i = 1, . . . , |G| (i.e. each simple represen-
tation of G) we can define

Wi = {v ∈ V | g · v = θi(g)v ∀g ∈ G}

the θi-isotypic component of V . Since V is completely reducible, V =
∑|G|

i=1Wi. We
need to show that if

∑|G|
i=1wi = 0 with wi ∈Wi for each i, then wi = 0 for each i. But

|G|∑
i=1

wi = 0 =⇒ 0 = g ·
|G|∑
i=1

wi =

|G|∑
i=1

θi(g)wi ∀g ∈ G

Then for each j,
|G|∑
i=1

∑
g∈G

θj(g
−1)θi(g)

wi = 0
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But by the previous Lemma,

LHS =
∑
g∈G

θj(g
−1)θj(g)wj = |G|wj

Thus wj = 0 as required.

This proof also works when C is replace by any other algebraically closed field with
characteristic 0.

You will extend this to all finite groups on Example Sheet 2.
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4 Characters

Summary so far: We want to classify all representations of a given (finite) group G.
We’ve seen when G is finite and char k = 0 then every representation decomposes as
V ∼=

⊕r
i=1 niVi with V1, . . . , Vr simple and pairwise non-isomorphic and ni ≥ 0.

Moreover, if k = k then ni = dimHomG(Vi, V ). Next we want to discuss how to classify
irreducible (C-)representations of a finite group and understand how to compute the ni
given V . We’ll do both by character theory.

4.1 Definitions

Definition (Character). Given a representation ρ : G→ GL(V ), the character of
ρ is the function G→ k, χ = χρ = χV : G→ k, g 7→ Tr ρ(g).

Since for matrices Tr(BA) = Tr(AB), the character does not depend on a choice of basis

Tr(PAP−1) = Tr(AP−1P ) = Tr(A)

Similarly, isomorphic representations have the same character.

Example. Let G = D6 = 〈s, t : s2 = t3 = e, sts = t−1〉, the dihedral group of order
6. Let G→ GL2(R) be the action of G by symmetries of a triangle. To compute χρ
we just need to know the eigenvalues of each matrix ρ(g). Each reflection (element
sti) has eigenvalue 1,−1 so χ(sti) = 0 for all i. The eigenvalues of the non-trivial
rotation must be non-trivial cube roots of 1 and sum to be a real number. Thus
χ(t) = χ(t2) = e2πi/3 + e4πi/3 = −1. Also, χ(e) = 2.

Proposition. Let (ρ, V ) be a representation of G. Then

(i) χV (e) = dimV

(ii) χV (g) = χV (hgh
−1) ∀g, h ∈ G

(iii) If W is another representation, then χV⊕W = χV + χW

(iv) If V is unitary then χV (g
−1) = χV (g)∀g ∈ G

Proof.

(i) χ(e) = Tr idV = dimV
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(ii) ρ(hgh−1) = ρ(h)ρ(g)ρ(h−1) thus ρ(g) and ρ(hgh−1) are conjugate in GL(V ) so
have the same trace.

(iii) Clear

(iv) By choosing a basis we may view ρ as a homomorphism G→ U(n). Then ρ(g−1) =

ρ(g)−1 = ρ(g)
>. So Tr ρ(g−1) = Tr(ρ(g)) since Tr is transpose invariant.

The characters contain very little data: an element of k for each conjugacy class in
G. But when G is finite and k = C, it contains all we need to reconstruct V up to
isomorphism.

Definition (Class function). A function f : G→ k is a class function if f(hgh−1) =
f(g) ∀g, h ∈ G. We’ll write CG for the k-vector space of class functions.

Notice that if O1, . . . Or are the conjugacy classes in G then the indicator functions

1Oi : G→ k, g 7→

{
1 g ∈ Oi
0 g 6∈ Oi

form a basis for CG. So dim CG = #conjugacy classes.

Start of

lecture 8
4.2 Orthogonality of characters

Assume G is always a finite group and k = C.

Recall
CG := {f : G→ C : f(hgh−1) = f(g) ∀g, h ∈ G} ≤ CG

and if O1, . . . , Or are the conjugacy classes then the indicator functions 1O1 , . . . ,1Or are
a basis.

We can define a Hermitian inner product in CG (restricted from one on CG) via

〈f1, f2〉G :=
1

|G|
∑
g∈G

f1(g)f2(g)

The indicator functions 1Oi are pairwise orthogonal with respect to 〈•, •〉G and moreover,

〈1Oi ,1Oi〉G =
1

|G|
|Oi| =

1

|CG(xi)|
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for any xi ∈ Oi. Thus if x1, . . . , xr are representatives of O1, . . . , Or, then

〈f1, f2〉G =

r∑
i=1

1

|CG(xi)|
f1(xi)f2(xi)

for f1, f2 ∈ CG.

Example. If G = D6 = 〈s, t | s2 = t3 = e, sts−1 = t−1〉 then

〈f1, f2〉D6 =
1

6
f1(e)f2(e) +

1

2
f1(s)f2(s) +

1

3
f1(t)f2(t).

In particular if V is the natural 2-dimensional representation of D6 and C is the
trivial representation then

χC = 1G

χV (e) = 2, χV (s) = 0, χV (t) = −1

〈χC, χC〉D6 =
1

6
· 1 + 1

2
· 1 + 1

3
· 1 = 1

〈χV , χV 〉D6 =
1

6
22 +

1

2
02 +

1

3
(−1)2 = 1

〈χC, χV 〉D6 =
1

6
2 +

1

2
0 +

1

3
(−1) = 0

Lemma. If V and W are (unitary) representations of G then

χHomk(V,W )(g) = χV (g)χW (g) ∀g ∈ G

Proof. Given g ∈ G we can choose bases v1, . . . , vn of V and w1, . . . , wm of W such that
g · vi = λivi and g · wj = µjwj for some λ1, . . . , λn, µ1, . . . , µn ∈ C. Then the functions
αij(vk) = δjkwi extend to linear maps αij ∈ Homk(V,W ) that form a basis (with respect
to given basis αij as represented by a matrix with 0s everywhere except a single 1 in the
i, j position).

(g · αij)(vk) = g(αij(g
−1vk))

= g(αij(λ
−1
k vk))

= λ−1
k (g(δjkwi))

= λ−1
k µiδjkwi

i.e. g ·αij = λ−1
j µiαij . So χHomk(V,W )(g) =

∑
i,j λ

−1
j µi = χV (g

−1)χW (g) = χV (g)χW (g).
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Lemma. If U is a representation of G then

dimUG =
1

|G|
∑
g∈G

χV (g) = 〈1G, χV 〉G.

Proof. We’ve seen before that π : U → Uj , π(u) = 1
|G|
∑

g∈G g · u is a projection of U
onto UG and so dimUG = Trπ = 1

|G|
∑

g∈GTr(g) = 1
|G|
∑

g∈G χU (g).

Proposition. If V and W are any representations of G then

dimHomG(V,W ) = 〈χV , χW 〉G

Proof.

dimHomG(V,W ) = dim(Homk(V,W ))G

= 〈1G, χHomk(V,W )〉G

=
1

|G|
∑
g∈G

χV (g)χW (g)

= 〈χV , χW 〉G

Theorem (Orthogonality of characters). If V andW are irreducible C-representations
of G, then

〈χV , χW 〉 =

{
1 V 'W
0 V 6'W

Proof. Use the fact that dimHomG(V,W ) = 〈χV , χW 〉G and Schur’s Lemma. If χV =
χW with V and W irreducible then 〈χV , χW 〉G = 〈χV , χV 〉G > 0 since χV 6= 0 so
dimHomG(V,W ) > 0 and V 'W by Schur’s Lemma.

Corollary. If (ρ, V ) is a representation of G then

V '
⊕

W irreducible representations of G/ '

〈χW , χρ〉GW

In particular if σ is a another representation with χρ = χσ then σ ' ρ.
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Proof. By Maschke’s Theorem there are nw ≥ 0 such that

V '
⊕

W irreducible
nwW

Moreover, we’ve seen before that nw = dimHomG(W,V ) = 〈χW , χρ〉G by the previous
Proposition. So the first part follows.

Since ⊕
W irreducible

〈χW , χρ〉GW

depends only on χρ (up to isomorphism), the second part follows.

Notice this proof depends on Maschke’s Theorem / completely reducible as well as
orthogonality of characters. For example, if we have the two representations of (Z,+)
determined by

ρ(1) =

(
1 0
0 1

)
σ(1) =

(
1 1
0 1

)
they are not isomorphism but have the same characters. ρ(n) = σ(n) = 2 ∀n ∈ Z. Indeed
both have trivial subrepresentations 〈e1〉 with trivial quotients. Slogan: “characters
cannot see gluing data”.

Corollary. If ρ is a C-representation of G with character χ then

ρ is irreducible ⇐⇒ 〈χ, χ〉G = 1.

Proof.

⇒ Is clear from orthogonality of characters.

⇐ ρ decomposes as ρ '
⊕
nwW with nw ≥ 0. Then χ =

∑
nwχW but

〈χ, χ〉G =
∑

n2w

so 〈χ, χ〉G = 1 =⇒ χ = χw for some W .

This is a good way to prove irreducibility.

Example. If V is the natural 2-dimensional representation of D6 then 〈χV , χV 〉D6 =
1 and so V is irreducible.
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Theorem (The character table is square). The irreducible characters of G form an
orthonormal basis of CG with respect to 〈•, •〉G.

Proof. We’ve already seen that the irreducible characters form an orthonormal set so it
remains to prove that they span. Let I = 〈χ1, . . . , χs〉 be their C-linear span.

It suffices to show that

I⊥ := {g ∈ CG : 〈f, χi〉G = 0 for i = 1, . . . , s} = 0.

For f ∈ CG and (ρ, V ) a representation of G show

ϕf,V =
1

|G|
∑
g∈G

f(g)ρ(g) ∈ HomG(V, V )

and use Schur’s Lemma to show if f ∈ I⊥ then ϕf,v = 0. Finally show 0 = ϕf,CGδe =
1
|G|f

so f = 0.
I = 〈χ1, . . . , χs〉

where χ1, . . . , χs are the irreducible characters. For f ∈ CG and a representation (ρ, V )
we can define

ϕf,V = ϕ =
1

|G|
∑
g∈G

f(g)ρ(g) ∈ Hom C(V, V )

If h ∈ G then

ρ(h)−1ϕρ(h) =
1

|G|
∑
g∈G

f(g)ρ(h−1gh)

=
1

|G|
∑
g∈G

f(hgh−1)ρ(g) since g 7→ hgh−1 is a bijection

=
1

|G|
∑
g∈G

f(g)ρ(g) since f ∈ CG

= ϕ

So ϕρ(h) = ρ(h)ϕ ∀h ∈ G and ϕ ∈ HomG(V, V ). If in particular, (ρ, V ) is irreducible,
then ∃λ ∈ C such that ϕf,V = λidC since C is algebraically closed. Then 〈f, χρ〉G =
Trϕf,V = λ dimV . So if f ∈ I⊥ then λ = 0 and ϕf,V = 0. But in general if (ρ, V ) is
any representation, then V '

⊕
Vi for some irreducible representations Vi (Maschke’s

Theorem) and ρ =
⊕
ρi and ϕf,V =

⊕
ϕf,Vi . So again if f ∈ I⊥, then ϕf,V = 0. In

particular if V = CG is the regular representation then

0 = ϕf,CGδe =
1

|G|
∑
g∈G

f(g)δg =
1

|G|
f

So f = 0 and I⊥ = 0.
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Start of

lecture 9 Corollary. The number of irreducible C-representations of G is the number of
conjugacy classes in G.

Notation. For g ∈ G we’ll write [g]G = {xgx−1 | x ∈ G} for the conjugacy class
containing g.

Corollary. For g ∈ G, χ(g) ∈ R for every irreducible character χ if and only if
[g]G = [g−1]G.

Proof. Since χ(g−1) = χ(g), χ(g) ∈ R ⇐⇒ χ(g) = χ(g−1). So we can rephrase the
statement as

χ(g) = χ(g−1) for every character χ ⇐⇒ [g]G = [g−1]G

Since the (irreducible) character span CG,

χ(g) = χ(g−1) for every (irreducible) character ⇐⇒ f(g) = f(g−1) for every f ∈ CG

Since 1[g]G is a class function f(g) = f(g−1) for every f ∈ CG ⇐⇒ [g]G = [g−1]G.

4.3 Character Tables

Definition (Character table). The character table of a finite group is defined as
follows. We list the conjugacy classes of G, [g1]G, . . . , [gr]G (by convention g1 = e
always). We list the irreducible character of G (over C) χ1, . . . , χr (by convention
χ1 = 1G the character of trivial representation). Then we write the matrix

e g2 g3 · · · gj · · · gr
χ1 1 1 1 · · · 1 · · · 1
...

...
...

...
...

...
...

...
χi · · · · · · · · · · · · χi(gj) · · · · · ·
...

...
...

...
...

...
...

...
χi · · · · · · · · · · · · · · · · · · · · ·

We sometimes write |[gi]G| above gi and sometimes |CG(gi)| (recall |[gi]G||CG(gi)| =
|G| by Orbit-Stabiliser Theorem).
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Examples

(1) C3 = 〈x〉. Let ω = e2πi/3. So ω2 = ω−1 = ω.

e x x2

χ1 1 1 1
χ2 1 ω ω
χ3 1 ω ω

Note the rows are indeed orthogonal with respect to 〈•, •〉G and the columns are
orthogonal with respect to standard Hermitian inner product.

(2) S3. Conjugacy classes are {e}, {(12), (13), (23)}, {(123), (132)}. So there must be
3 irreducible representations / character. χ1 = 1G is the character of the trivial
representation. χ2 = ε : S3 → {±1} ⊂ C× (where ε is the sign of a permutation)
is a homomorphism and so a 1-dimensional representation and so a character. To
compute χ3 we can use orthogonality of characters. Let χ3(e) = a, χ3((12)) = b,
χ3((123)) = c. Since every g in S3 is conjugate to g−1 in S3, a, b, c ∈ R. Then

0 = 〈1, χ3〉G =
1

6
(a+ 3b+ 2c)

0 = 〈ε,1〉G =
1

6
(a− 3b+ 2c)

which can be solved to give b = 0, a = −2c. Then

1 = 〈χ3, χ3〉G =
1

6
(a2 + 3b2 + 2c2)

So c2 = 1. But a is the dimension of the representation with character χ3 so a ≥ 1.
So a = 2, c = −1.

|CS3(gi)| 6 2 3
gi e (12) (123)

1 1 1 1
ε 1 −1 1
χ3 2 0 −1

In fact we already know about χ3 as the character of the representation of S3 (∼= D6)
on R2 induced from the symmetries of a triangle. Once again the columns are
orthogonal and their lengths are 12 + 12 + 22 = 6 = |CS3(e)|, 12 + (−1)2 + 02 = 2 =
|CS3((12))|, 12 + 12 + (−1)2 = 3 = |CS3((123))|.
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Proposition (Column orthogonality). If G is a finite group and χ1, …, χr is a
complete list of its irreducible characters then for g, h ∈ G,

r∑
i=1

χi(g)χi(h) =

{
0 if [g]G 6= [h]G

|CG(g)| if [g]G = [h]G

In particular
(∑
i=1

dimVi)
2 =

r∑
i=1

χi(e)
2 = |G|

where Vi is a representation such that χVi = χi.

Proof. Let X be the character table viewed as a matrix Xij = χi(gj) and D be the
diagonal (real) matrix with Dii = |CG(gi)|. Orthogonality of characters gives

δij = 〈χi, χj〉G

=
∑
k

1

|CG(gk)|
χi(gk)χj(gk)

=
∑
k

1

Dkk
χikχjk

= (XD−1X>)ij

So XD−1X>I since X is square, X is invertible and D−1X> = X−1 so D = X>X since
D is real, i.e.

∑
k χk(gi)χk(gj) = Dij = δij |CG(gi)|.

4.4 Permutation Representations

If recall that if a group G acts on a finite set X, CX = {f : X → C} is a representation
via

(g · f)(x) = f(g−1x)

or equivalently g · δx = δgx ∀g ∈ G, x ∈ X.

Lemma. If χ is the character of CX then χ(g) = |{x ∈ X | gx = x}|.

Proof. If X = {x1, . . . , xd} then with respect to the basis δx1 , . . . , δxd the matrix of g has
i-th column with a 1 in entry j and 0 elsewhere if g ·xi = xj . So i-th column contributes
1 to the trace if i = j and 0 otherwise.
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Start of

lecture 10 Theorem. If V1, . . . , Vr is a complete list of irreducible representations of a finite
group G/C, then the regular representation CG decomposes as

r⊕
i=1

(dimVi)Vi.

In particular, |G| =
∑r

i=1(dimVi)
2.

Proof. We just need to show

dimHomG(CG,Vi) = dimVi ∀i

But

dimHomG(CG,Vi) = 〈χCG, χVi〉G

=
1

|G|
∑
g∈G
|{h ∈ G | gh = h}|χVi(g)

=
1

|G|
|G|χVi(e)

= χVi(e)

as required.

Proposition (Burnside’s Lemma). Let G be a finite group and X a finite set with
G-action. Then

〈1, χCX〉G = #orbits of G on X.

Proof.

|G|〈1, χCX〉G =
∑
g∈G

χCX(g)

=
∑
g∈G
|{x ∈ X | gx = x}|

= |{(g, x) ∈ G×X | gx = x}|

=
∑
x∈X
|{g ∈ G | gx = x}|
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So

〈1, χCX〉G =
∑
x∈X

|StabG(x)|
|G|

=
∑
x∈X

1

|OrbG(X)|

=
∑

orbits Oi

∑
x∈Oi

1

|Oi|


= #orbits

Note that ifX =
⋃
Oi is the orbit decomposition then we’ve seen before CX =

⊕
COi, so

Burnside’s Lemma says each COi contains precisely one copy of the trivial representation
C – the constant functions on Oi. This is not so hard to prove directly (exercise).

If X,Y are two sets with G-actions then X × Y is a set with G-action via g · (x, y) =
(g · x, g · y) for (x, y) ∈ X × Y , g ∈ G.

Lemma. If X,Y are finite, then χCX×Y = χCX · χCY .

Proof. If g ∈ G,

χCX×Y (g) = |{(x, y) ∈ X × Y | (gx, gy) = (x, y)}|
= |{x ∈ X | gx = x}| · |{y ∈ Y | gy = y}|
= χCX(g)χCY (g)

Corollary. If G is a finite group and X,Y are finite sets with G-actions, then

〈χCX , χCY 〉G = #G-orbits in X × Y

Proof.

〈χCX , χCY 〉G =
1

|G|
∑
g∈G

χCX(g)χCY (g)

=
1

|G|
∑
g∈G

1χCX×Y

= 〈1, χCX×Y 〉G
= #G-orbits on X × Y Burnside’s Lemma
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Remark. If X is any set with G-action and at least 2-elements then {(x, x) | x ∈
X} ⊂ X×X is G-stable and non-empty and its complement {(x, y) | x, y ∈ X,x 6=}
is also non-empty and G-stable.

Definition (2-transitive action). We say G acts 2-transitively on X if for all
x1, x2, y1, y2 with x1 6= y1, x2 6= y2, there exists g ∈ G such that gx1 = x2 and
gy1 = y2 (i.e. g · (x1, y1) = (x2, y2)). Equivalently if the G-action on X × X has
precisely two orbits.

Example. Sn acts 2-transitively on {1, . . . , n} for all n ≥ 2. If g acts 2-transitively
on X ×X then by the last corollary,

〈χCX , χCX〉G = 2

So if χCX =
⊕r

i=1 niVi, Vi irreducible and pairwise non-isomorphic then
∑
n2i = 2.

That is, CX has two non-isomorphic irreducible summands, namely the constant
functions and

V = {f ∈ CX |
∑
x∈X

f(x) = 0}

Then χV is an irreducible character so

χV (g) = χCX(g)− 1G(g) = (# fixed points of g on X)− 1

Moreover, if V is irreducible then the action must be 2-transitive.

Exercise: If G = GL2(Fp) then decompose the permutation representation of G coming
from action of G on Fp ∪ {∞} by Möbius maps:(

a b
c d

)
z =

az + b

cz + d

if z ∈ Fp \ {−d/c} etc.

Examples

(1) G = S4. The character table of S4 is
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|[gi]G| 1 3 8 6 6

gi e (12)(34) (123) (12) (1234)

1 1 1 1 1 1∑
1 1 1 1 1

χ3 3 −1 0 1 −1
χ4 3 −1 0 −1 1
χ5 2 2 −1 0 0

Proof. 1,
∑

are constructed as for S3. By our discussion above, χC{1,2,3,4} = 1+χV
for some irreducible representation V of degree 3 and we can let χ3 = χV such
that χ3(g) = #fixed points of g − 1. We saw on Example Sheet 1, Question 2 that
if θ is a 1-dimensional representation and ρ is any irreducible representation then
(ρ⊗θ)(g) := θ(g)ρ(g) is an irreducible representation of G and χρ⊗θ(g) = χρ(g)θ(g).
Thus we can set χ4 =

∑
·χ3. We can compute χ5 via column orthogonality

12 + 12 + 32 + 32 + χ5(e)
2 = 24

so χ5(e) = 2, and
∑5

i=1 χi(e)χi(e) = 0 ∀g ∈ S4 \ {e}.

(In fact there is a homomorphism S4 → S3 giving a 2-transitive action of S4 on
{1, 2, 3} and χ5 = χC{1,2,3} − 1).

(2) G = A4. Every irreducible representation of S4 may be restricted to A4 and its
character values won’t change. In this way we get 3 characters of A4

1 = 1s4 |A4 , ψ2 = χ3|A4 = χ3|A4 , ψ3 = χ5|A4

It is irreducible since it has dimension 1:

〈ψ2, ψ2〉A4 =
1

12
(132 + 3(−1)2 + 8 · 02) = 1

so ψ2 is irreducible. However,

〈ψ3, ψ3〉A4 =
1

12
(122 + 3(2)2 + 8(−1)2) = 2

so ψ3 decomposes into two 1-dimensional non-isomorphic pieces.

Exercise: Use this to construct the character table of A4. Recall [(123)]S4 is a
union of two classes in A4.
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5 The Character Ring

We’ve already seen that the algebraic structure on CG for a finite group G has represen-
tation theoretic meaning, e.g. if V1, V2 are representations then

χV1⊕V2 = χV1 + χV2

χ0 = 0

χk = 1G

〈χV1 , χV2〉G = dimHomG(V1, V2)

We’ve also seen χCX×Y = χCX · χCY and if θ, ρ are representations such that θ is 1-
dimensional then χθ⊕ρ = χθ · χρ(= θχρ). We want to generalise this to any pair of
representations so χσ⊕ρ = χσ · χρ.

Start of

lecture 11 χ0 = 0 chere 0 is the k-vector space of dimension 0, so GL(0) = {id0}. χk = 1G where
k is the trivial representation.

Goal: If V , W are representations, build a representation V ⊗W such that χV⊗W =
χV · χW .

5.1 Tensor Products

Suppose V and W are vector spaces over k with bases v1, . . . , vm and w1, . . . , wn respec-
tively. We can view V ⊕W as the set of pairs (v, w) with v ∈ V , w ∈W under pointwise
operation or as the vector space with basis v1, . . . , vm, w1, . . . , wn.

Definition. The tensor product V ⊗W of V and W is the k vector space with basis
wi ⊗ wi for 1 ≤ i ≤ m and 1 ≤ j ≤ n (so dimV ⊗W = (dimV )(dimW )).
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Example. If X and Y are finite then kX ⊗ kY has basis δx ⊗ δy for x ∈ X, y ∈ Y
and αX×Y : kX ⊗ kY → kX × Y , δx ⊗ δy 7→ δ(x,y) extends to an isomorphism of
vector spaces.

Notation. If v =
∑
λivi ∈ V and w =

∑
µjwj ∈W then

v ⊗ w :=
∑
i,j

λiµjvi ⊗ wj ∈ V ⊗W.

So under αX×Y ,
αX×Y (f ⊗ g)(x, y) = f(x)g(y)

Note that in general, not every element of V ⊗W can be written in the form V ⊗W .
For example, v1⊗w1+ v2⊗w2. The smallest number of summands needed is called
the rank of the tensor.

Lemma. The map V ×W → V ⊗W , (v, w) 7→ v ⊗ w is bilinear.

Proof. We should prove that if x, x1, x2 ∈ V and y, y1, y2 ∈W and u1, u2 ∈ k then

(u1x1 + u2x2)⊗ y = u1(x1 ⊗ y) + u2(x2 ⊗ y)
x⊗ (u1y1 + u2y2) = u1(x⊗ y1) + u2(x⊗ y2)

We’ll do the second and then appeal to symmetry. We write x =
∑
λivi, yk =

∑
µkjwj

for k = 1, 2. Then

x⊗ (u1y1 + u2y2) =
∑
i,j

λi(u1µ
1
j + u2µ

2
j )(vi ⊗ wj)

u1(x⊗ y1) + u2(x⊗ y2) =
∑
i,j

u1λiµ
1
j (vi ⊗ wj) +

∑
i,j

u2λIµ
2
j (vi ⊗ wj)

These are equal.

Exercise: Show that given U , V and W there is a one to one correspondence

{linear maps V ⊗W → U} → {bilinear maps V ×W → U}

given by precomposition with the bilinear map (v, w) 7→ v ⊗ w.

Lemma. If x1, . . . , xm is any basis for V and y1, . . . , yn is any basis for W then
xi ⊗ yj with 1 ≤ i ≤ m and 1 ≤ j ≤ n is a basis for V ⊗W . Thus the definition of
V ⊗W does not depend on the choice of basis.
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Proof. It suffices to show that the given set spans V ⊗W since it has size mn. But if
vi =

∑
r Arixr and wJ =

∑
s Vsjys then

vi ⊗ wj =
∑
r,s

(AriBsj)(xr ⊗ ys)

But {vi ⊗ wj}1≤i≤m,1≤j≤n span V ⊗ V ⊗W so we’re done.

Remark (for enthusiast’s). In fact we could’ve defined V ⊗W in a basis independent
way. Let F be the (infinite dimensional) vector space basis 〈v ⊗ w | v ∈ V,w ∈ W 〉
and R the subspace spanned by elements

x⊗ (u1y1 + u2y2)− u1(x⊗ y1)− u2(x⊗ y2)
(u1v1 + u2v2)⊗ y − u1(x1 ⊗ y)− u2(x2 ⊗ y)

for all x, x1, x2 ∈ V , y, y1, y2 ∈W , u1, u2 ∈ k. Then let V ⊗W = F/R.

Exercise: Show that for vector spaces U , V andW there is a natural (basis independent)
isomorphism

(U ⊕ V )⊗W → (U ⊗W )⊕ (V ⊗W ).

Definition.Suppose V andW are vector spaces with bases v1, . . . , vm and w1, . . . , wn
and ϕ : V → V and ψ :W →W are linear maps. We can define

ϕ⊗ ψ : V ⊗W → V ⊗W (ϕ⊗ ψ) (vi ⊗ wj) = ϕ(vi ⊗ ψ(wj)

Example. If ϕ is represented by A and ψ is represented by B with respect to given
bases, then if we order Vi ⊗Wj lexicographically (i.e. v1 ⊗ w1, v1 ⊗ w2, v1 ⊗ w3, …,
v1 ⊗ wn, v2 ⊗ w1, …, vm ⊗ wn), then (ϕ⊗ ψ) is representede by the block matrix

A11B A12B · · ·
A21B A22B · · ·
...

...
. . .

AmmB


Since

(ϕ⊗ ψ)(vi ⊗ wj) =

(∑
k

Akivk

)
⊗

(∑
l

Bljwl

)
=
∑
k,l

AkiBljvk ⊗ wl
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Lemma. The linear map ϕ⊗ ψ does not depend on the basis. Indeed,

(ϕ⊗ ψ)(v ⊗ w) = ϕ(v)⊗ ψ(w) ∀v ∈ V,w ∈W.

Proof. Writing v =
∑
λivi and w =

∑
µjwj ,

(ϕ⊗ ψ)(v ⊗ w) = (ϕ⊗ ψ)

∑
i,j

λiµjvi ⊗ wj


=
∑
i,j

λiµjϕ(vi)⊗ ψ(wj)

= ϕ(v)⊗ ψ(w)

Remark. The proof really says that V ×W → V ⊗W , (v, w) 7→ v ⊗ w is bilinear
and ϕ⊗ψ is the corresponding linear map V ⊗W → V ⊗W from an earlier exercise.

Lemma. Suppose ϕ,ϕ1, ϕ2 ∈ Homk(V, V ) and ϕ,ϕ1, ϕ2 ∈ Homk(W,W ). Then

(i) (ϕ1ϕ2)⊗ (ψ1ψ2) = (ϕ1 ⊗ ψ1)(ϕ2 ⊗ ψ2) ∈ Homk(V ⊗W,V ⊗W ).

(ii) idV ⊗ idW = idV⊗W

(iii) Tr(ϕ⊗ ψ) = Tr(ϕ)Tr(ψ).

Proof.

(i) Given v ∈ V , w ∈W by the last lemma we can compute

(ϕ1ϕ2 ⊗ ϕ1ϕ2)(v ⊗ w) = ϕ1ϕ2(v)⊗ ϕ1ϕ2(w)

= (ϕ1 ⊗ ψ1)(ϕ2(v)⊗ ψ2(w))

= (ϕ1 ⊗ ψ1)(ϕ2 ⊗ ψ2)(v ⊗ w)

We’re done since all maps and linear and {v ⊗ w} spans V ⊗W .

(ii) Is clear.
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(iii) By earlier example it suffices to see

Tr


A11B

A22B
.. .

AnnB

 =
∑
i,j

BiiAjj = (TrA)(TrB)

Definition. Given two representations (ρ, V ) and σ,W ) of a group G we can define
a representation (ρ⊗ σ, V ⊗W ) via

(ρ⊗ σ)(g) = ρ(g)⊗ σ(g)

This is a representation by parts (i) and (ii) of the last lemma, and χρ⊗σ = χρ · χσ by
part (iii).

Start of

lecture 12 Remark.

(1) Tensor product of representations defined last time is a generalisation of the
tensor product of a representation and a 1-dimensional representation previously
defined.

(2) If X and Y are finite sets with G-action

αX×Y : kX ⊗ kY → kX × Y
δx ⊗ δy 7→ δ(x,y)

is an intertwining map.

Definition (Character ring). The character ring R(G) of a group G is defined by

R(G) := {χ1 − χ2 | χ1, χ2are characters of G} ⊂ CG

Since χV1⊕V2 = χV1 + χV2 , R(G) is a subgroup of CG under +. Since 1G is a character,
R(G) contains the multiplicative 1 in CG.

Since χV1⊗V2 = χV1 · χV2 ,

(χV1 − χV2) · (χW1 − χW2) = χ(V1⊗W1)⊕(V2⊗W2) − χ(V2⊗W1)⊕(V1⊗W2) ∈ R(G)

R(G) is closed under · and so R(G) is a subring of CG.
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Observation: If (ρ, V ) is a representation of G and (σ,W ) is a representation of another
group H, then

ρ⊗ σ : G×H → GL(V ⊗W )

(g, h) 7→ ρ(g)⊗ σ(h)

is a representation of G×H, by parts (i) and (ii) in the last lemma last time. Moreover,

(χV ⊗ χW )(g, h) = χV⊗W (g, h) = χV (g)χW (h)

by part (iii) of the same lemma. Thus

R(G)×R(H)→ R(G×H)

(χV , χW ) 7→ χV ⊗ χW

defines a Z-bilinear map.

The construction of V ⊗W as a representation of G from last time can be viewed as the
case G = H in the construction followed by restriction along

G→ G×G
g 7→ (g, g)

Proposition. Suppose G and H are finite groups, and (ρ1, V1), . . . , (ρr, Vr) are the
irreducible C-representations of G and (σ1,W1), . . . , (σs,Ws) are all the irreducible
C-representations of H.

For each 1 ≤ i ≤ r, 1 ≤ j ≤ s, (ρi⊗ σj , Vi⊗Wj) is a irreducible C-representation of
G×H. Moreover, all irreducible C-representations of G× h arise in this way.

We’ve seen this when G, H are abelian before since all these representations have degree
1 in this case.

Proof. Let χ1, . . . , χr be the characters of ρ1, . . . , ρr, and ψ1, . . . , ψs the characters of
σ1, . . . , σs. The character of ρi ⊗ σj is (χi ⊗ ψj)(g, h) = χi(g)ψj(h). Then

〈χi ⊗ ψj , χk ⊗ ψl〉G×H =
1

|G×H|
∑

(g,h)∈G×H

χi(g)ψj(h)χk(g)ψl(h)

=

 1

|G|
∑
g∈G

χi(g)χk(g)

( 1

|H|
∑
h∈H

ψj(g)ψl(g)

)
= 〈χi, χk〉G〈ψj , ψl〉H
= δikδjl
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So the χi ⊗ ψj are pairwise distinct and irreducible. Now

∑
i,j

(dimVi ⊗Wj)
2 =

(∑
i

() dimVi)
2

)∑
j

(dimWj)
2

 = |G||H| = |G×H|

Question: If V,W are irreducible representations of G, can V ⊗W be an irreducible
representation of G? We’ve seen that if dimV = 1 or dimW = 1 then yes. Typically
the answer is no.

Example. G = S3

1 (123) (12)

1 1 1 1
ε 1 1 −1
V 2 −1 0

clear that 1 ⊗W ' W always. ε ⊗ ε ∼= 1, ε ⊗ V = V . Also, V ⊗ V has character
χ2
V .

χ2
V (e) = 22 = 4, χ2

V ((123)) = (−1)2 = 1, χ2
V ((12)) = 02 = 0

χ2
V = χV + ε+ 1.

In general if χ1, . . . , χr are all irreducible characters of G and 1 ≤ i, j ≤ r then

χiχj =
r∑

k=1

aki,jχk

for some ai,jk ∈ N0. These numbers aki,j determine the ring structure on R(G) since
R(G) =

⊕r
i=1 Zχi as a group under +.

In fact, V ⊗ V, V ⊗ V ⊗ V, . . . are never irreducible if dimV > 1.

5.2 Symmetric and exterior powers

For any vector space V we can define

σV := σ : V ⊗ V → V ⊗ V σ(v ⊗ w) = w ⊗ v ∀v, w ∈ V

(Exercise: prove that V × V → V ⊗ V , (v, w) 7→ w ⊗ v is bilinear).
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Notice σ2 = idV⊗V , so if char k 6= 2, then σ decomposes V ⊗ V into eigenspaces.

S2V := {a ∈ V ⊗ V | σ(a) = a} the symmetric square of V
Λ2V := {a ∈ V ⊗ V | σ(a) = a} the exterior / alternating square of V

In fact V ⊗V = S2V ⊕Λ2V is the isotypical decomposition of V ⊗V as a representation
of C2. Suppose for now that char k 6= 2.

Lemma. Suppose v1, . . . , vm is a basis for V .

(i) S2V has basis vivj := 1
2(vi ⊗ vj + vj ⊗ vi) for 1 ≤ i ≤ j ≤ m (vjvi = vivj if

i > j allowed).

(ii) Λ2V has basis vi∧vj := 1
2(vi⊗vj−vj⊗vi) for 1 ≤ i < j ≤ m (vj∧vi = −vi∧vj

if i ≥ j allowed)

Thus dimS2V = 1
2m(m+ 1) and dimΛ2V = 1

2m(m− 1).

Proof. It is easy to check:

(i) vivj ∈ S2V for all i, j.

(ii) vi ∧ vj ∈ Λ2V for all i, j.

(iii) The union of the claimed bases spans V ⊗ V and has size m2 = dimV ⊗ V

So it follows from this that V ⊗ V = S2V ⊕ Λ2V . Everything else follows.

You might want to ponder Example Sheet 2, Question 11 in this context.

Proposition. Let (ρ, V ) be a representation of G.

(i) V ⊗ V = S2V ⊕ Λ2V as a direct sum of representations of G.

(ii) For g ∈ G such that ρ(g) is diagonalisable (for convenience, but there exists a
slightly more complicated proof not using this condition),

χS2V (g) =
1

2
(χV (g)

2 + χV (g
2))

χΛ2V =
1

2
(χV (g)

2 − χV (g2))

Proof. For (i) we need that S2V and Λ2V are G-invariant, i.e. if a ∈ V ⊗ V such that
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σ(a) = λa for λ = ±1, then σ(ga) = λga ∀g ∈ G. For this it suffices to show that ρ(g)
and σ commute ∀g ∈ G, i.e. σ ∈ HomG(V ⊗V, V ⊗V ). BUt σ◦g(v⊗w) = σ(gv⊗gw)) =
gw ⊗ gv = g(w ⊗ v) = gσ(v ⊗ w) ∀g ∈ G.

To prove (ii) it suffices to compute χS2V since sum of RHS = χ2
V = χV⊗V . Let v1, . . . , vm

form a basis for V such that ρ(g)vi = λivi for 1 ≤ i ≤ m.

g(viλi) = λiλjvivj

So
χS2V (g) =

∑
1≤i≤j≤m

λiλj

and

χV (g)
2 + χV (g

2) =

(∑
i

λi

)2

+
∑
j

(λj)
2 = 2

∑
λ2i + 2

∑
i<j

λiλj = 2χS2V (g)

Exercise: Prove the formula for χΛ2V directly.

Start of

lecture 13 Recall

χS2V (g) =
1

2
(χV (g)

2 + χv(g
2))

χΛ2V (g) =
1

2
(χV (g)

2 − χV (g2))

S4 e (12)(34) (123) (12) (1234)

1 1 1 1 1 1
ε 1 1 1 −1 −1
χ3 3 −1 0 1 −1
εχ3 3 −1 0 −1 1
χ5 2 2 −1 0 0

χ2
3 9 1 0 1 1

χ3(g
2) 3 3 0 3 −1

S2χ3 6 2 0 2 0
Λ2χ3 3 −1 0 −1 1

since e2 = e = ((12)(34))2 = (12)2, (123)2 = (132), (1234) = (13)(24).

Thus S2χ3 = 1+χ3+χ5, Λ2χ3 = εχ3. So given 1, ε, χ3, we can construct the remaining
characters from S2χ3 and Λ2χ3. More generally, for any vector sapce V we may consider

V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

= V ⊗ V ⊗(n−1)
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for n ≥ 1 (V ⊗0 = k, V ⊗1 = V ). Then for any w ∈ Sn, we can define an (invertible)
linear map

σ(w) : V ⊗n → V ⊗n

v1 ⊗ · · · ⊗ vn 7→ vw−1(1) ⊗ · · · ⊗ vw−1(n)

for v1, . . . , vn ∈ V .

Exercise: Show that this defines a representation of Sn on V ⊗n and that if V is a
representation of G then the G-action and Sn-action on V ⊗n commute.

Thus we can decompose V ⊗n as a representation of Sn into isotypic components if
char k = 0 and each will be a G-invariant subspace of V ⊗n.

Definition. If V is a vector space

(i) The n-th symmetric power of V is

SnV := {a ∈ V ⊗n | σ(w)(a) = a ∀w ∈ Sn}

(ii) The n-th alternating / exterior power of V is

ΛnV := {a ∈ V | σ(w)(a) = ε(w)a ∀w ∈ Sn}

Note that for n ≥ 3,

SnV ⊕ ΛnV = {a ∈ V ⊗n | σ(w)a = a ∀w ∈ An} ( V ⊗n

We also define the following notation for v1, . . . , vn ∈ V

v1v2 · · · vn =
1

n!

∑
w∈Sn

vw(1) ⊗ · · · ⊗ vw(n)

v1 ∧ · · · ∧ vn =
1

n!

∑
w∈Sn

ε(w)vw(1) ⊗ · · · ⊗ vw(n)

(for char k = 0).

Exercise: Show that if v1, . . . , vd is a basis for V then

vi1 · · · vin | 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ d}

is a basis for SnV , and

vi1 ∧ · · · ∧ vin | 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ d}
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is a basis for ΛnV . Hence given a basis for V with respect to which ρ(g) is diagonal,
compute χSnV (g) and χΛnV (g) in terms of the eigenvlaues of ρ(g).

For any vector space V , ΛdimV V ' k and ΛnV = 0 for n > dimV .

Exercise: Show that if (ρ, V ) is a representation of G then ΛdimV V ' det ρ as a
representation of G.

Definition. Given a vector space V we can define the tensor algebra of V

TV :=
⊕
n≥0

V ⊗n

as an infinite dimensional vector space. Then TV is a (non-commutative) graded
ring with product

(v1 ⊗ · · · ⊗ vr) · (w1 ⊗ · · · ⊗ wn) = v1 ⊗ · · · ⊗ vr ⊗ w1 ⊗ · · · ⊗ ws ∈ V ⊗(r+s)

For v1⊗· · · vr ∈ V ⊗r, w1⊗· · ·⊗wr ∈ V ⊗r with graded quotient map. The symmetric
algebra of V

SV :=
TV

{x⊗ y − y ⊗ x | x, y ∈ V }
and exterior algebra of V

ΛV :=
TV

{x⊗ y + y ⊗ x | x, y ∈ V }

One can show SV '
⊕

n≥0 S
nV and ΛV '

⊕
n≥0 Λ

nV in characteristic 0. This can be
seen via

x1 · · ·xn ←[ [x1 ⊗ · · · ⊗ xn] x1 ∧ · · · ∧ xn ←[ [x1 ⊗ · · · ⊗ xn]
SV is a commutative graded ring and ΛV is a graded commutative (x ∈ ΛrV and
y ∈ ΛsV then x ∧ y = (−1)rsy ∧ x) ring.

5.3 Duality

Recall that CG has a ∗-operation given by f∗(g) = f(g−1) for all f ∈ CG, g ∈ G. This
also restricts to R(G). Recall also if (ρ, V ) is a representation of G then the dual rep
(ρ∗, V ∗) is defined by

ρ∗(g)(θ)(v) = θ(ρ(g−1)(v)) ∀v ∈ V, g ∈ G, θ ∈ V ∗

Lemma 2. χV ∗ = χ∗
V .
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Proof. If ρ(G) is represented by A with respect to a bais v1, . . . , vd for V and ε1, . . . , εd
is the dual basis for V ∗, then ρ(g−1)vi =

∑
j(A

−1)jivj So

ρ∗(g)(εk)(vi) = εk(ρ
−1(g)vi) = εk

∑
j

(A−1)jivj

 = (A−1)ki

and
ρ∗(g)(εk) =

∑
j

(A−1)>jkεj

i.e. ρ∗(g) is represented by (A−1)> with respect to this dual basis. Taking traces gives
χρ∗(g) = χρ(g

−1) = χ∗
ρ(g).

We say V is self-dual if V ' V ∗ as representations of G. When G is finite and k = C
then V is self-dual if and only if χ∗

V = χV which happens if and only if χV (g) ∈ R ∀g ∈ G
since χ∗

V = χV in this case.

Example.

(1) G = 〈x〉 ' C3 and V = C, ρ : G → C×, xj 7→ e2πij/3. Then ρ∗(xj) = e−2πij/3

and V is not self-dual.

(2) G = Sn since [g]Sn = [g−1]Sn ∀g ∈ Sn, every representation of Sn is self-dual.

(3) Permutation representations are always self-dual.

We now have various ways of building representations of a group G.

• permutation representations.

• restrict representations of H to G along homomorphisms θ : G→ H.

• tensor products.

• SnV and ΛnV .

• decomposition of representations into irreducible components.

• character theoretically, e.g. row / column orthogonality in character table.

One more next time related to restriction from G to H for H ≤ G called induction.

Start of

lecture 14
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6 Induction

6.1 Construction

Suppose H is a subgroup of a (finite) group G. Then the restriction from G to H gives
a way of building representations of H from representations of G. We want to go the
other way and build representations of G from representations of H.

Recall that [g]G denotes the conjugacy class of g in G. So

1[g]G(x) =

{
1 if x is conjugate to g in G

0 otherwise

We note that for g ∈ G,

[g−1]G = [g]−1
G = {y−1 | y ∈ [g]G}

since (xgx−1)−1 = xg−1x−1. So 1
∗
[g]G

= 1[g−1]G . If H ≤ G then [g]G ∩ H is (possibly
empty) union of H-conjugacy classes

[g]G ∩H =
⋃

[h]H⊆[g]G

[h]H

So r : CG → CH ; r(f) = f |H is a well-defined linear map with r(1[g]G) =
∑

[h]H⊆[g]G
1[h]H .

Since for every finite group G

〈f1, f2〉G =
1

|G|
∑
g∈G

f∗1 (g)f2(g)

defines a non-degenerate bilinear form on CG, the map r has an adjoint r∗ : CG → CG
given by

〈r(f1), f2〉H = 〈f1, r∗(f2)〉G
for f1 ∈ CG, f2 ∈ CH . In particular for f ∈ CH ,

〈1[g−1]G , r
∗(f)〉G =

1

|G|
∑
x∈[g]G

r∗(f)(x) =
1

|CG(g)|
r∗(f)(g)

On the other hand

〈1[g−1]G , r
∗(f)〉G = 〈r(1[g−1]G), f〉H

=
∑

[h]H⊆[g]G

1

|CH(h)|
f(h)
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so combining these we see that

r∗(f)(g) =
∑

[h]H⊆[g]G

|CG(g)|
|CH(h)|

f(h) (1)

Since xgx−1 = ygy−1 ⇐⇒ x−1y ∈ CG(g),

r∗(f)(g) =
∑

h∈[g]∩H

|CG(g)|
|CH(h)||[h]H |

f(h)

=
1

|H|
∑
x∈G

f◦(x−1gx)

where

f◦(g) =

{
f(g) g ∈ H
0 otherwise

Question: Is r∗(R(H)) ⊆ R(G)? Suppose χ is a C-character ofH and ψ is an irreducible
C-character of G. Then

〈r∗(χ), ψ〉G = 〈χ, r(ψ)〉H ∈ N0

by Orthogonality of characters since r(ψ) is a character of H.

So writing Irr(G) = {irreducible C-character of G},

r∗(χ) =
∑

ψ∈Irr(G)

〈χ, ψ|H〉Hψ (2)

is even a character of G.
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Example. G = S3 and H = A3 = {e, (123), (132)}. If f ∈ CH then by (1),

r∗(f)(e) =
|CS3(e)|
|CA3(e)|

f(e) =
6

3
f(e) = 2f(e)

r∗(f)((12)) = 0

r∗(f)((123)) =
|CS3((123))|
|CA3((123))|

f((123)) +
|CS3((123))|
|CA3((132))|

f((132))

=
3

3
f((123)) +

3

3
f((132)) = f((123)) + f((132))

Thus

A3 1 (123) (132)

χ1 1 1 1
χ2 1 ω ω2

χ3 1 ω2 ω

S3 1 (12) (123)

r∗(χ1) 2 0 2
r∗(χ2) 2 0 −1
r∗(χ3) 2 0 −1

(where ω = e2πi/3 and we use the fact that ω + ω−1 = 1).

Thus r∗(χ1) = 1 + ε and r∗(χ2) = r∗(χ3) = χV where V is the 2-dimensional
irreducible representation of S3 consisted with formula (2) since r(1) = r(ε) = χ1

and r(χV ) = χ2 + χ3.

Note that χ is an irreducible character of G, r∗(χ) can be an irreducible character of G
but need not be in general. Also note that r∗(χ)(e) = |G|

|H|χ(e).

We’d like to build a representation of G with character r∗(χ) given a representation W
of H with character χ.

Suppose that X is a finite set and W is a k-vector space we may define

F(X,W ) = {f : X →W}

the k-vector space of functions X to W .

So F(X, k) = kX. Then dimF(X,W ) = |X|dimW since if w1, . . . , wd is a basis for W
then

(δxwi | x ∈ X, 1 ≤ i ≤ d)
is a basis for F(X,W ).

If K is a group and X has a K-action and W is a representation of k then F(X,W ) is a
representation of K via (k ·f)(x) = k · (f(k−1x)) for all f ∈ F(X,W ), k ∈ K,x ∈ X. For
example if W = k is the trivial representation, then F(X,W ) = kX as representations
of K.
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Now suppose H ≤ G are finite groups then G can be viewed as a set with G×H-action
via (g · h) · x = gxh−1, ∀(g, h) ∈ G×H,x ∈ X.

If W is a representation of G then we can view W sa a representation of G×H via

(g, h) · w = h · w

Now F(G,W ) is a representation of G×H via

((g, h) · f)(x) = hf(g−1xh) ∀(g, h) ∈ G×H, f ∈ F(G,W ), x ∈ G

So it can be viewed as a representation of G and as a representation of H via g 7→ (g, eH)
and h 7→ (eG, h) respectively and the actions commute.

Now

F(G,W )H = {f ∈ F(G,W ) | (e, h)f = f ∀h ∈ H}
= {f ∈ F(G,W ) | f(xh) = h−1f(x) ∀h ∈ H,x ∈ G}

is a G-invariant subspace of F(G,W ) since if (e, h) · f = f then for g ∈ G,

(e, h)(g, e)f = (g, e)(e, h)f = (g, e)f

Example. F(G, k)H ' kG/H if k is the trivial representation of G.

Definition (Induced representation). Suppose H is a subgroup of a finite group G
and W is a representation of H. The induced representation

IndGHW = F(G,W )H

is a representation of G.

Lemma. dim IndGHW = |G|
|H| dimW .

Proof. Let X = G/H be the left cosets of H in G and let x1, . . . , x|G/H| be coset
representatives. Then

θ : F(G,W )H → F(X,W )

θ(f)(xiH) = f(xi)

is a k-linear map with inverse ϕ(l)(xih) = h−1l(xi) for all l ∈ F(X,W ), h ∈ H, i =
1, . . . , |G/H|.
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Theorem (Frobenius reciprocity). If V is a representation of G and W is represen-
tation of G then

HomG(V, Ind
G
HW ) ' HomH(Res

G
HV,W )

where ResGHV is the restriction of V to H.

Start of

lecture 15 Corollary. If k = C then

〈χV , χIndG
HW
〉G = 〈χV |H , χW 〉G

In particular, χIndG
HW

= Γ∗(χW ).

Proof of Frobenius reciprocity. We’ll prove HomG(V,F(G,W )) ' Homk(V,W ) as rep-
resentations of H and then deduce the result by taking H-invariants. Here the action of
H on the left hand side is given by

(h · θ)(v) = h · θ(v) θ ∈ HomG(V,F(G,W )), v ∈ V, h ∈ H

so HomG(V,F(G,W ))H = HomG(V,F(G,W )H) = HomG(V, Ind
G
HW ). Note that this

means

(h · θ)(v)(x) = h(θ(v)(xh))

h(θ(h−1x−1v)(w))

∀x ∈ G since θ is G-invariant. We can define a linear map

ψ : HomG(V,F(G,W ))→ Homk(V,W )

ψ(θ)(v) = θ(v)(e) (∗)

We claim ψ is anH-intertwining map. First we prove for h ∈ H, θ ∈ HomG(V,F(G,W )),
v ∈ V .

h · (ψ(θ))(v) = h(ψ(θ)(h−1v))

= h(θ(h−1v)(e))

= (h · θ)(v)(e) by (∗) for x = e

= ψ((h · θ))(v)

and ψ is H-equivariant.

Given ϕ ∈ Homk(V,W ) we can define

ϕG ∈ Homk(V,F(G,W ))

ϕG(v)(x) = ϕ(x−1v) ∀x ∈ G, v ∈ V
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Then for all g, x ∈ G, v ∈ V ,

ϕG(gv)(x) = ϕ(x−1gv) = ϕG(v)(g
−1x) = (g · ϕG(v))(x)

i.e. ϕG ∈ HomG(V,F(G,W )). We can compute ψ(ϕG)(v) = ϕG(v)(e) = ϕ(v), ϕ ∈
Homk(V,W ), v ∈ V and

ψ(θ)G(v)(x) = ψ(θ)(x−1v) = θ(x−1v)(e) = x−1θ(v)(e) = θ(v)(x)

for θ ∈ HomG(V,F(G,W )), x ∈ G, v ∈ V . Thus ϕ 7→ ϕG is an inverse to ψ.

Remark. We could instead have computed χIndG
HV

directly and shown that it is
equal to r∗(χW ) and then deduced Frobenius reciprocity from this when k = C.

6.2 Mackey Theory

This is the study of representations like ResGK IndGHW for H, k subgroups of G and W a
representation of H. We can (and will) use it to characterise when IndGHW is irreducible
as a representation of G (when k = C). If H,K are subgroups of G then H ×K acts on
G via

(h, k) · g = kgh−1

An orbit of this action is called a double coset. We write

KgH = {kgh | k ∈ K,h ∈ H}

for the orbit containing g.

Definition. K\G/H = {KgH | g ∈ G} is the set of double cosets.

For any representation (ρ,W ) of H and g ∈ G we can define a representation (gρ, gW )
bw

ρg : gH → GL(W )

ghg−1 7→ ρ(h)

where gH := gHg−1 ≤ G.

Theorem (Mackey’s restriction formula). If G is a finite group with subgroups H
and K and W is a representation of H then

ResGK IndGHW '
⊕

KgH∈K\H/H

IndKK∩gH ResHgH∩K
gW
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Proof. Note that

IndGHW = F(G,W )H

= F

 ∐
KgH∈K\G/H

KgH,W

H

∼=
⊕

KgH∈K\G/H

F(KgH,W )H

as representations of K.

So it suffices to show
F(KgH,W )H ' F(K, gW )K∩gH

as representations of K. We’ll defer this to next time.

Corollary (Character version of Mackey restriction). If χ is a character or a rep-
resentation of a H then

(IndGHχ)|K =
∑

KgH∈K\G/H

IndKgH∩K(gχ|gH∩K)

Exercise: Prove this corollary directly using characters.

Corollary (Mackey’s irreducibility criterion). IfH ≤ G andW is a C-representation
of H then IndGHW is irreducible if and only if

(i) W is irreducible as a representation of H

(ii) For each g ∈ G \H, the two representations Res
gH
gH∩H

gW and ResHgH∩HW of
H ∩ gH have no irreducible subrepresentations in common.

Proof.

〈χIndG
HW

, χIndG
HW
〉G = 〈χW , χResG

H IndG
HW
〉G (Frobenius reciprocity)

=
∑

HgH∈H\G/H

〈χW , χIndH
H∩gH

Res
gH
gH∩H

gW 〉H (Mackey’s restriction formula)

=
∑

HgH∈H\G/H

〈ResHgH∩HχW ,Res
gH
gH∩HχgW 〉 (Frobenius reciprocity)

So IndGHW is irreducible if and only if RHS is 1. The term for the double coset HeH
is 〈χW , χW 〉H ≥ 1 and all the other terms are ≥ 0 so irreducibility is equivalent to
〈χW , χW 〉H = 1 and all otehr temrs are 0.
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〈χW , χW 〉H = 1 if and only if condition (1).

〈ResHH∩gHχW ,Res
gH
gH∩HχgW 〉 = 0 if and only if (ii) for g.

Note for condition (ii) we only need to check for a family of double cosets excluding
HeH = H.

Corollary. If H E G and W is an irreducible representation of H then

IndGHW is irreducible ⇐⇒ gχW 6= χW ∀g ∈ G \H

(gχW (ghg−1) = χW (h)).

Proof. Since H E G, gH = H for all g ∈ G and gW is irreducible since W is. So by
Mackey’s irreducibility criterion,

IndGHW is irreducible ⇐⇒ W 6' gW ∀g ∈ G \H
⇐⇒ χW 6= gχw ∀g ∈ G \H

Example.

(1) H = 〈r〉 ' Cn the subgroup of rotations in G = D2n. The irreducible characters
of H are all of the form

χk(r
j) = e2πijk/n

We see that IndGHχK is irreducible if and only if

χK(rj) 6= χ(r − j) for some j ⇐⇒ χK is not real valued

(2) G = Sn, H = An. If g ∈ Sn is a cycle type that splits in An and χ is an
irreducible character of An taking different values on the two classes, then

Ind Sn
An
χ

is irreducible.

Start of
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F(KgH,W )H = {f : KgH →W | f(xh) = h−1f(x) ∀x ∈ KgH, h ∈ H}
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is a representation of K via

(kf)(x) = f(k−1x) ∀x ∈ KgH ∈ k ∈ K.

Last time we reduced the proof of Mackey’s restriction formula to the following lemma:

Lemma. There is an isomorphism of representations of K

F(KgH,W )H
∼→ F(K, gW )K∩gH .

Proof. Let Θ : F(KgH,W )H → F(K, gW ), Θ(f)(k) = f(kg). If k′ ∈ K,

(k′ ·Θ(f))(k) = Θ(f)(k′−1k) = f(k′−1g) = (k′ · f)(kg) = Θ(k′f)(k)

i.e. Θ is k-linear. If ghg−1 ∈ K for some h ∈ H, then

Θ(f)(kghg−1) = f(kgh)

= ρ(h)−1f(kg)

= (gρ)(ghg−1)Θ(f)(k)

i.e. ImΘ ≤ F(K, gW )K∩gH . We try to define an inverse to Θ via

ψ : F(K, gW )K∩gH → F(KgH,W )H

ψ(f)(kgh) = ρ(h−1)f(k)

If k1gh1 = k2gh2 then k−1
2 k1 = g(h2h

−1
1 )g−1 ∈ K ∩ gH.

f(k2) = f(k1(k
−1
2 k1)

−1)

= (gρ)(gh2h
−1
1 g−1)f(k1)

ρ(h2h
−1
1 )f(k1)

So ρ(h2)−1f(k2) = ρ(h−1
1 )f(k1) i.e. ψ(f) is well-defined. Moreover if f ∈ F(KgH,W )H ,

then
ψΘ(f)(kgh) = ρ(h)−1Θ(f)(k) = ρ(h−1)f(kg) = f(kgh).

and if f ∈ F(K, gW )
gH∩K . Also

Θψ(f)(k) = ψ(f)(kg) = f(k)

so ψ is inverse to Θ.
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6.3 Frobenius Groups

Theorem (Frobenius 1901). Let G be a finite group acting transitively on a set X.
If each g ∈ G \ {e} fixes at most one element of X then

K = {e} ∪ {g ∈ G | gx 6= x ∀x ∈ X}

is a normal subgroup of G of order |X|.

Definition (Frobenius group). A Frobenius group is a finite group G that has a
transitive action on a set X with 1 < |X| < |G| such that each g ∈ G \ {e} fixes at
most one element of X. It follows from Frobenius 1901 that Frobenius groups can’t
be simple. The subgroup K is called the Frobenius kernel and any of the subgroups

StabG(x)

for x ∈ X are called Frobenius complements.

Example.

(1) G = D2n. For n odd acting on vertices of an n-gon in the usual way. The
reflections fix precisely one vertex and the non-trivial solutions fix no vertices.

(2)

G =

{(
a b
0 1

) ∣∣∣∣a, b ∈ Fp, a 6= 0

}
acting on

X =

{(
x
1

) ∣∣∣∣x ∈ Fp
}

by matrix multiplication.

Note. No proof of Frobenius 1901 is known that does not use representation theory!

Proof of Frobenius 1901. Fix x ∈ X and let H = StabG(x) so |G| = |H||X| by Orbit
Stabiliser theorem. By hypothesis if g ∈ G \H then

{e} = StabG(gx) ∩ StabG(x).

Thus
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(i)
∣∣∣⋃g∈G gHg

−1
∣∣∣ = ∣∣⋃x∈X StabG(x)

∣∣ = (|H| − 1)|X|+ 1

(ii) If h1, h2 ∈ H then [h1]H = [h2]H ⇐⇒ [h1]G = [h2]G.

(iii) CG(h) = CH(h) if h ∈ H \ {e}.

By (i),

|K| =

∣∣∣∣∣{e} ∪
(
G \

⋃
x∈X

StabG(x)

)∣∣∣∣∣ = |H||X| − ((|H| − 1)|X|+ 1) + 1 = |X|

as claimed. We must show K E G.

If χ is any character of H, we can compute IndGHχ:

IndGHχ(g) =
∑

[h]H⊂[g]G

|CG(x)|
|CH(h)|

χ(h)

=


|G|
|H|χ(e) if g = e

χ(h) if [g]G = [h]G 6= {e} by (i) and (ii)
0 if g ∈ K \ {e}

Suppose Irr(H) = {χ1, . . . , χr} and let

θi = IndGHχi − χi(e)1G − χi(e) IndGH1H ∈ R(G)

(this is sort of the magic bit). So

θi(g) =


χi(e) g = e

χi(h) [g]G = [h]G for some h ∈ H
χi(e) g ∈ K

If θi were a character of a representation of G then the kernel of the representation would
contain K. Since θi ∈ R(G), θi =

∑
niψi for ni ∈ Z and ψi ∈ Irr(G). Now we calculate:

〈θi, θi〉G =
1

|G|
∑
g∈G
|θi(g)|2

=
1

|G|

 ∑
h∈H\{e}

|G|
|H|
|χi(h)|2 +

∑
k∈K
|χi(e)|2


=
|X|
|G|

∑
h∈H
|χi(h)|2

= 〈χi, χi〉H
= 1
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So
∑
n2j = 1 and θi = ±ψj for some j. But gi(e) = χi(e) > 0 so θi ∈ Irr(G).

To finish we write

θ =

r∑
i=1

χi(e)θi

and so θ(h) =
∑r

i=1 χi(e)χi(h) = 0 for h ∈ H \{e} by column orthogonality. Also θ(k) =∑r
i=1 χi(e)

2 = |H| by column orthogonality. Thus K is the kernel of the representation
corresponding to θ.

In his thesis, John Thompson proved (among other things), that K must be nipotent or
equivalently the product of its Sylow-p-subgroups.
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7 Arithmetic Properties of Characters

We’ll assume G is finite and k = C.

7.1 Arithmetic results

The following facts will be proved in Number Fields next term.

Definition. x ∈ C is an algebraic integer if it is a root of a monic polynomial with
integer coefficients.

Facts

(1) The algebraic integers form a subring O of C.

(2) Any subring of C that is finitely generated as an (additive) abelian group is contained
in O.

(3) If x ∈ O ∩Q then x ∈ Z (see )

For (1) and (2), see GRM Example Sheet 4, Q13 from 2023. For (3), see Numbers &
Sets Example Sheet 3, Q3 from 2021.

Lemma. If χ is a character of G then χ(g) ∈ O for all g ∈ G.

Proof. We know that χ(g) is a sum of n-th roots of unity (n = |G|, say). Each such n-th
root of unity satisfies Xn − 1 and so lies in O. So χ(g) ∈ O by Fact (1).

The group algebra

We now want to make the k-vector space kG into a ring. There are two sensible ways
to do this. One is by pointwise multiplication making kG a commutative ring. More
usefully for us right now is the comvolution product

(f1f2)(g) =
∑
x∈X

f1(gx)f2(x
−1) =

∑
x,y∈G
xy=g

f1(x)f2(y).

that makes kG into a (usually) non-commutative ring.
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We can verify that δgδh = δgh for all g, h ∈ G. So we can rephrase the product as(∑
g ∈ Gλgδg

)(∑
h∈G

µHδh

)
=
∑
k∈G

(∑
g,h∈G
gh=kλjµh

)
δk.

From now on we’ll have this product in mind when we view kG as a ring. A (finitely
generated) kG-module is “the same” as a representation of G. Given a representation
(ρ, V ) of G we make V into a (finitely generated) kG-module via

f · v =
∑
g∈G

f(g)ρ(g)v ∀v ∈ V, f ∈ kG.

Conversely, given a finitely generated kG-module M , the underlying k-vector space is a
representation of G via

ρ(g)(m) = δg·m ∀m ∈M, g ∈ G.

Moreover, under this correspondence G-linear maps correspond to kG-module homo-
morphisms.

Exercise: Suppose kX is a permutation representation of G. Calculate the action of
f ∈ kG on kX under the correspondence.

It will prove useful to study Z(kG), the centre of kG; that is the subring of kG consisting
of elements f ∈ kG such that fh = hf for all h ∈ kG. This is because for f ∈ Z(kG),∑

g∈G
f(g)ρ(g) ∈ HomG(V, V )

for every representation (ρ, V ) of G.

Lemma. Suppose f ∈ kG. Then f ∈ Z(kG) if and only if f ∈ CG the space of class
functions. In particular, dimk Z(kG) = #conjugacy classes in G.

Proof.

f ∈ kG ⇐⇒ fh = hf ∀h ∈ kG
⇐⇒ fδg = δgf ∀g ∈ G
⇐⇒ δg−1fδg = f (since δe = 1 and δg1δg = δe)

But

(δg−1fδg)(x) =
∑
g∈G

(δg−1f)(xy−1)δg(y)

= (δg−1f)(xg−1)

= f(gxg−1) ∀g ∈ G

So f ∈ Z(kG) if and only if f ∈ CG as required.
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Remark. The multiplication on Z(kG) and CG will not be the same even though
their k-vector space structures are the same even though both are commutative.

Notation. Given g ∈ G define the class sum

C[g]G(x) =

{
1 x ∈ [g]G

0 x 6∈ [g]G

Then if [g1]G, . . . , [gr]G is a list of conjugacy classes in G we write

Ci := C[gi]G .

We used to write 1[gi]G for Ci. We have switched to draw attention to the different
multiplication.

Proposition.

CiCj =

r∑
l=1

alijC l

where
alij = |{(x, y) ∈ [g1]G × [gj ]G | xy = gl} ∈ Z.

The alij are called the structure constants of Z(kG).

Proof. Since Z(kG) is a ring,

CiCj =
r∑
l=1

alijCl

for some alij ∈ k. But we explicitly compute

alij = (CiCj)(gl)

=
∑
x,y∈G

Ci(x)Cj(y)

= |{(x, y) ∈ [gi]G × [gj ]G | xy = gl}|

as required.

SUppose now that (ρ, V ) is an irreducible representation of G. Then we’ve seen that if
z ∈ Z(kG), then

z : V → V, zv =
∑
g∈G

z(g)ρ(g) ∈ HomG(V, V ) = kidV
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(k algebraically closed). So we get a k-algebra homomorphism

ωρ : Z(kG)→ k

where z ∈ Z(kG) acts by ωρ(z)idV on V . Taking traces we see

(dimVi)ωρ(z) =
∑
g∈G

z(g)χρ(g)

=⇒ ωρ(z) =
∑
g∈G

z(g)χρ(g)

χρ(e)

=⇒ ωρ(Ci) =
χρ(gi)

χρ(e)
|[gi]G| (†)

We now see that ωρ only depends on χρ so we can write ωχρ = ωρ.

Lemma. The values ωχ(Ci) ∈ O for all irreducible characters χ.

Note that htis is not immediately clear as 1
χ(e) 6∈ O for χ(e) 6= 1.

Proof. Since ωχ is an algebra homomorphism,

ωχ(Ci)ωχ(Cj) =

r∑
l=1

alijωχ(C l) (∗)

so the subring of C generated by the ωχ(Ci) is a finitely generated abelian group under
+. By Fact (2) in Section 7.1, it follows that ecah ωχ(Ci) ∈ O.

Lemma.
alij =

|G|
|CG(gi)||CG(gj)|

∑
χ∈Irr(G)

χ(gi)χ(gj)χ(g
−1
l )

χ(e)
.

In particular, alij is deterined by the character table.

Proof. By (∗) and (†)

χ(gi)

χ(e)
|[gi]G|

χ(gj)

���χ(e)
|[gj ]G| =

r∑
l=1

alijχ(gl)|[gl]G|

���χ(e)

TODO
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7.2 Degree of irreducible representations

Theorem. If V is a simple representation of G then dimV | |G|.

Proof. Let χ = χV and we’ll show |G|
dimV ∈ O ∩Q = Z.

|G|
dimV

=
1

χ(e)

∑
g∈G

χ(g)χ(g−1)

=
1

χ(e)

r∑
i=1

|[gi]G|χ(gi)χ(g−1
i )

=

r∑
i=1

ωχ(gi)χ(g
−1
i )

∈ O

since O is a ring and χ(g−1
i ) and ωχ(gi) are all in O. But also |G|

dimV ∈ Q, so |G|
dimV ∈ Z =

O ∩Q as required.

Example.

(1) If G is a p-group and χ is an irreducible character then χ(e) is always a power of
p. In particular, if |G| = p2 then as

∑
χ∈Irr(G) χ(e)

2 = |G| we see that χ(e) = 1
for all χ ∈ Irr(G), i.e. G is abelian.

(2) If G is An or Sn and p > n is prime, then p can’t divide the degree of an
irreducible representation.

In fact a strange result is true.

Theorem (Burnside (1904)). If (ρ, V ) is a simple representation of G then we have
dimV

∣∣ |G/Z(G)|.
Compare to |[g]G| = |G|

|CG(g)|

∣∣∣∣ |G|
|Z(G)| for all g ∈ G.

Proof. If Z = Z(G) then by Schur’s Lemma ρ|Z : Z → GL(V ) has image contained
in k∗idV . ρ(z) = λzidV say for each z ∈ Z. For each m ≥ 2 consider the irreducible
representation of Gm = G×G× · · · ×G︸ ︷︷ ︸

m times

given by ρ⊗m : Gm → GL(V ⊗m). If z =
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(z1, . . . , zm) ∈ Zm then

ρ⊗m(z) =
m∑
i=1

λzi idV ⊗m

= λ(∏m
i=1 zi

)idV ⊗m

So if
∏m
i=1 zi = 1 then z ∈ ker ρ⊗m. So V ⊗m can be viewed as an irreducible degree

(dimV )m representation of Gm

Z′ where

Z ′ =

{
(z1, . . . , zm) ∈ Zm

∣∣∣∣ m∏
i=1

zi = 1

}
≤ Zm.

Moreover |Z ′| = |Z|m−1. So by previous theorem (dimV )m | |G|m
|Z|m−1 . Now if p is a prime

and pa | dimV then pam | |G|m
|Z|m−1 =

∣∣G
Z

∣∣m |Z|. By taking m large enough that pm - |Z|,

we see that pa |
∣∣∣G| ∣∣∣. Thus dimV |

∣∣G
Z

∣∣ as claimed.

Proposition. If G is a simple group then G has no irreducible representations of
degree 2.

Proof. If G is abelian then all irreducible representations have degree 1. So we may
assume that G is non-abelian. If |G| is even then ∃x ∈ G of order 2. By Example
Sheet 2, Question 2, if χ is an irreducible character of G then χ(x) ≡ χ(e) (mod 4). So
if χ(e) = 2 then χ(x) = ±2 so ρ(x) = ±I. Thus ρ(x) ∈ Z(ρ(G)), ×××× . (G is non-abelian
and simple, and ρ is non-trivial).

Now if |G| is odd, we’re done by (either of) today’s theorems so far.

7.3 Burnside’s paqb theorem

Lemma. Suppose 0 6= α ∈ O is of the form 1
m

∑m
i=1 λi for some λi ∈ C such that

λni = 1 for some n ∈ N. Then |α| = 1 (and so all λi are equal).

Sketch-proof (non-examinable). See Galois Theory for the details.

By assumption, α ∈ Q(ε), ε = e2πi/n. Let G = Gal(Q(ε)/Q). It is known that

{β ∈ Q(ε) | σ(β) = β ∀σ ∈ G} = Q.
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Consider N(α) =
∏
σ∈G σ(α). It is easy to verify that σ(N(α)) = N(α) for all σ ∈ G,

i.e. N(α) ∈ Q. Moreover, N(α) ∈ O since if α satisfies a monic integer polynomial then
every σ(α) (σ ∈ G) satisfies the same polynomial. Thus N(α) ∈ Z. But for each σ ∈ G,

|σ(α)| =

∣∣∣∣∣ 1m
m∑
i=1

σ(λi)

∣∣∣∣∣ ≤ 1.

So N(α) = ±1 and |α| = 1.

Lemma. Suppose χ is an irreducible character of G and g ∈ G such that χ(e) and
|[g]G| are coprime. Then |χ(g)| = χ(e) or |χ(g)| = 0.

Note that if |χ(g)| = χ(e) then g acts as a scalar on the corresponding representation V
and so ρ(g) ∈ Z(ρ(G)).

Proof. By Bezout’s lemma, we can find a, b ∈ Z such that aχ(e) + b|[g]G| = 1. Then

aχ(g) + b

(
|[g]G|χ(g)
χ(e)

)
=
χ(g)

χ(e)
=: α ∈ O

Since χ(g) is a sum of χ(e) |G|-th roots of unity, it follows from the last lemma that
α = 0 or |α| = 1.

Proposition. If G is a finite non-abelian group with g 6= e such that |[g]G| has
prime power order, then G is not simple.

Proof. Suppose for contradiction that G is simple and g ∈ G \ {e} such that |[g]G| = pr

for some prime p. If χ ∈ Irr(G)\{1G} then |χ(g)| < χ(e) since otherwise ρ(g) is a scalar
and lies in Z(ρ(g)) = 1. Thus by the last lemma, for every non-trivial character χ, either
p | χ(e) or χ(g) = 0. By column orthogonality,

0 =
∑

χ∈Irr(G)

χ(e)χ(g)

Thus
−1

p
=

∑
χ∈Irr(G)
χ 6=1

χ(e)

p
χ(g) ∈ O ∩Q = Z ××××
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Theorem (Burnside 1904). Let p, q be primes and G a group of order paqb with
a, b ≥ 0 and a+ b ≥ 2. Then G is not simple.

Proof. Without loss of generality b > 0. Let Q be a Sylow-p-subgroup of G and pick
g ∈ Z(Q) \ {e} (possible since Q is a q-group). Now qb | |CG(g)| so |[g]G| = pr for some
0 ≤ r ≤ a. The Theorem follows from the last proposition.

Remark.

(1) It follows that every group of order paqb is soluble, i.e. there exists a chain of
subgroups G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gn = {e} such that for all i, Gi+1 E Gi
and Gi/Gi+1 is abelian.

(2) Note that |A5| = 22 · 3 · 5 so a finite simple group can have precisely 3 prime
factors. Conjugacy classes are 1, 15, 20, 12, 12 not prime power order.

(3) The first purely group theoretic proof of the paqb-theorem first appeared in 1972.
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8 Topological Groups

In this chapter, k = C. This is important, because we will be using topological prop-
erties of C (contrary to previously, where we normally are just using the fact that it is
algebraically closed).

8.1 Definitions and Examples

Definition (Topological group). A topological group G is a group G which also has
the structure of a topological space such that the multiplication map G × G → G,
(x, y) 7→ xy and the inversion map G→ G, x 7→ x−1 are both continuous.

Examples

(1) GLn(C) with the subspace topology from Matn(C) ' Cn2 , since

(AB)ij =

n∑
k=1

AikBkj and A−1 =
1

detA
adjA

are both continuous. More generally, if V is any C-vector space we can give GL(V )
the topology that makes the isomorphism GL(V ) → GLn(C) (given by choosing a
basis) a homeomorphism. Since conjugation on GLn(C), X 7→ P−1XP is continuous
for all P ∈ GLn(C), this does not depend on the choice of basis.

(2) G finite with discrete topology since all amps G×G→ G and G→ G are continuous.

(3) O(n) = {A→ GLn(R) | A>A = I}, SO(n) = {A ∈ O(n) | detA = 1}.

(4) U(n) = {A ∈ GLn(C) | A
>
A = I}, SU(n) = {A ∈ U(n) | det(A) = 1}. In particular,

U(1) = S1 = ({x ∈ C× | |z| = 1}, ·).

(5) ∗ (non-examinable) G a profinite group such as Zp the completion of Z with respect
to p-adic metric.

Definition (Representation of a topological group). A representation of a topolog-
ical group G is a continuous homomorphism

ρ : G→ GL(V )

(V a vector space over C).
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Remark.

(1) If G is a (finite) group with the discrete topology then every function G →
GL(V ) is continuous and we recover the old definition.

(2) If X is any topological space then α : X → GLn(C) is continuous if and only if
αij : X → C, αij(x) := α(x)ij is continuous for all i, j.

8.2 Compact groups

Our most powerful when studying finite groups was the operator 1
|G|
∑

g∈G. We want to
replace

∑
by
∫

.

Definition (Haar integral). For G a topological group and C(G,R) = {f : G→ R |
f continuous}, a linear map

∫
G : C(G,R)→ R is called a Haar integral if

(i)
∫
G 1G = 1 (So

∫
G is normalised so that total volume is 1).

(ii)
∫
G f(xg)dg =

∫
G f(g)dg =

∫
G f(gx)dg for all x ∈ G (so

∫
G is translation

invariant). (we write
∫
G f(g)dg =

∫
G f and

∫
G f(xg)dg means apply

∫
G to

g 7→ f(xg) ∈ C(G,R)).

(iii)
∫
G f ≥ 0 if f(g) ≥ 0 for all g ∈ G (positivity).

Example.

(1) If G is finite then
∫
G f = 1

|G|
∑

g∈G f(g) is a Haar integral.

(2) If G = S1,
∫
G f = 1

2π

∫ 2π
0 f(eiθ)dθ is a Haar integral.

Note that for any R-vector space V ,
∫
G induces a linear map (also called

∫
G)∫

G
: C(G,V )→ V

Under the identification V ' V ∗∗ for θ ∈ V ∗, f ∈ C(G,V ),

θ

(∫
G
f

)
=

∫
G
θ(f(g))dg
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More concretely, if v1, . . . , vn is a basis for V and f ∈ C(G,V ) then

f =
n∑
i=1

fivi

with fi ∈ C(G,R) and ∫
G
f =

n∑
i=1

(∫
G
fi

)
vi.

This map is also translation invariant and sends a constant function to its only value.
Moreover if α : V →W is linear and f ∈ C(G,V ), then

α

(∫
G
f

)
=

∫
G
α(f).

In particular if V is a C-vector space v 7→ iv is R-linear so
∫
G : C(G,V )→ V is C-linear.

Theorem. If G is a compact Hausdorff group then there is a unique Haar integral
on G.

Proof. Omitted.

All the examples in Section 8.1 are compact Hausdorff except GLn(C) which is not
compact. We’ll follow standard practice in this field and write “compact” to mean
“compact and Hausdorff”.

Corollary (Weyl’s unitary trick). If G is a compact topological group then every
representation (ρ, V ) of G is unitary.

Proof. As for finite groups, let 〈•, •〉 be an inner product on V . Then

(v, w) :=

∫
G
〈ρ(g)v, ρ(g)w〉dg

is the required G-invariant inner product. Since, for x ∈ G and v, w ∈ V ,

(ρ(x)v, ρ(x)w) =

∫
G
〈ρ(gx)v, ρ(gx)w〉dg

=

∫
G
〈ρ(g)v, ρ(g)w〉dg (by G-invariance of

∫
G

)

= (v, w)

Clearly (•, •) is an inner product by using C-linearity of
∫
G and positivity of

∫
G.
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Remark. It follows that every compact subgroup of GLn(C) is conjugate to a
subgroup of U(n).

Corollary. All representations of a compact group are completely reducible.

If G→ GL(V ) is a representation then χρ := Tr ρ is a continuous class function on G.

Lemma. If U is a representation of G compact then

dimUG =

∫
G
χ.

Proof. Let π ∈ Homk(U,U) be defined by π =
∫
G ρ ∈ Homk(U,U). If x ∈ G then

ρ(x) · π = ρ(x)

∫
G
ρ(g)dg =

∫
G
ρ(xg)dg = π

since
∫
G is translation invariant. So Imπ ≤ UG. If u ∈ UG then

π(u) =

(∫
G
ρ(g)dg

)
(u) =

∫
G
ρ(g)udg =

∫
G
u = u

Thus π is a projection onto UG. So

dimUG = Trπ = Tr

(∫
G
ρ

)
=

∫
G
Tr ρ =

∫
G
χ.

Corollary (Orthogonality of characters). If G is a compact group and V , W are
irreducible representations of G then

〈χV , χW 〉G =

{
1 if V 'W
0 if V 6'W

where
〈f1, f2〉G =

∫
G
f1(g)f2(g)dg

To prove this as in the finite case we use χv(g−1) = χV (g). This holds because V is
unitary.

Start of

lecture 20

78

https://notes.ggim.me/RT#lecturelink.20


8.3 Worked example: S1

Goal: Understand the representations of S1. Since

f 7→ 1

2π

∫ 2π

0
f(eiθ)dθ

is a Haar integral, these representations are all unitary and hence completely reducible.
So it is enough to understand the irreducible (unitary) representations of S1.

By Schur’s Lemma all such have degree 1, i.e. we have a correspondence

{irreducible representations of S1} ↔ {continuous group homomorphisms S1 → S1}.

Since R→ S1, x 7→ e2πix induces an isomorphism of topological groups

R/Z ∼→ S1{
continuous group

homomorphisms S1 → S1

}
↔
{

continuous group
homomorphisms θ : R → S1

∣∣∣ ker θ ≥ Z
}

Fact: If f : R→ S1 is a continuous function with f(0) = 1 there is a unique continuous
function α : R→ R such that α(0) = 0 and f(x) = e2πiα(x) for all x ∈ R.

R

R S1

e2πixα

f

Sketch proof. On small intervals we can define α(x) = 1
2πi log x and we choose the branch

of log so that α(0) = 0 and α is continuous.

Lemma. If θ : R→ S1 is a continuous group homomorphism there is ψ : R→ R a
continuous group homomorphism such that θ(x) = e2πiψ(x) for all x ∈ R.

Proof. Our fact uniquely determines ψ : R→ R continuous function such that ψ(0) = 0
and θ(x) = e2πiψ(x). We must show ψ is a group homomorphism. To this end we consider

∆ : R2 → R
∆(a, b) = ψ(a+ b)− ψ(a)− ψ(b)

We must show ∆ ≡ 0. It is easy to see that ∆ is continuous. Also,

e2πi∆(a,b) = θ(a+ b)θ(a)−1θ(b)−1 = 1

so ∆ takes values in Z. So as R2 is connected, ∆ is constant (Z is discrete). But
∆(0, 0) = 0, so ∆ ≡ 0 as required.

79



Lemma. If ψ : (R,+)→ (R,+) is a continuous group homomorphism then ∃λ ∈ R
such that ψ(x) = λx for all x ∈ R.

Proof. Let λ = ψ(1). Then ψ(n) = λn for all n ∈ Z (ψ is a homomorphism). So

mψ
( n
m

)
= ψ(n) = λn

for all n
m ∈ Q (ψ is a homomorphism), i.e. ψ(x) = λx for all x ∈ Q. But Q is dense in

R, so ψ(x) = λx for all x ∈ R.

Theorem (Representations of S1). Every irreducible representation of S1 is 1-
dimensional and is of the form z 7→ zn for some n ∈ Z.

Proof. We’ve already seen that if ρ : S1 → GLd(C) is an irreducible representation then
d = 1 and ρ(S1) ≤ S1. Moreover ρ induces a continuous homomorphism θ : R→ S1 given
by θ(x) = ρ(e2πix). By the last two lemmas, there exists λ ∈ R such that θ(x) = e2πiλx

for all x ∈ R. Since θ(1) = ρ(e2πi) = ρ(1) = 1, we deduce e2πiλ = 1, i.e. λ ∈ Z. So
ρ(e2πix) = (e2πix)λ for λ ∈ Z.

The theorem says that the “character table” of S1 has rows given by χn for n ∈ Z,
χn(z) = zn.

(unitary 1-dimensional characters of Z are all of the form n 7→ einθ for some eiθ ∈ S1).

Notation. Z[z, z−1) =

{∑
n∈Z anz

n

∣∣∣∣ an ∈ Z,
∑

n∈Z |an| <∞
}
j a ring under nat-

ual operations.

If V is any representation of S1 then it decomposes as a direct sum of 1-dimensional
subrepresentations and its character χV =

∑
n∈Z anz

n with all an ≥ 0 and
∑
an =

dimV , where as usual an is the number of copies of (z 7→ zn) in V .

So
R(S1) = {χ− χ′ | χ, χ′ are characters of S1} = Z[z, z−1)

By orthogonality of characters,

〈χn, χm〉S1 =
1

2π

∫ 2π

0
e2πi(m−n)θdθ = dm,n

an = 〈χn, χV 〉S1 =
1

2π

∫ 2π

0
χV (e

iφ)e−inφdφ
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and so
χV (e

iθ) =
∑
n∈Z

(
1

2π

∫ 2π

0
χV (e

iφ)e−inφdφ

)
einφ

So Fourier decomposition of χV decomposes χV into irreducible characters and the
FOurier mode is the multiplicity.

Remark. In fact by the theory of Fourier series any continuous function on S1 can
be approximated uniformly by a finite C-linear combination of χn. Moreover the χn
form a complete orthonormal set in the Hilbert space

L2(S1) =

{
f : S1 → C

∣∣∣∣ ∫ 2π

0
|f(eiθ)|2dθ <∞

}
/ ∼

of square integrable functions on S1, i.e. every function in L2(S1) has a unique
expression as

f(eiθ) =
∑
n∈Z

(
1

2π

∫ 2π

0
f(eiφ)e−inφdφ

)
einφ

converging with respect to the norm ‖f‖2 =
∫ 2π
0 |f(e

iθ)|2dθ. We can phrase this as

L2(S1) =
⊕̂

n∈Z
Cχn

(
⊕̂

means complete direct sum), which is an analogue of

CG =
⊕

V ∈Irr(G)

(dimV )V

for finite groups (cf Peter Weyl Theorem).

8.4 Second worked example SU(2)

Recall SU(2) = {A ∈ GL2(C) | A
>
A = I, detA = 1}. If

A =

(
a b
c d

)
∈ SU(2)

then as detA = 1,

A−1 =

(
d −b
−c a

)
=

(
a c

b d

)
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Thus d = a and c = −b. Moreover, |a|2 + |b|2 = 1. In this way,

SU(2) =

{(
a b

−b a

) ∣∣∣∣∣ a, b ∈ C, |a|2 + |b|2 = 1

}

which is homeomorphic to S3 ⊂ R4 ' C2. More precisely if

H = R · SU(2) =

{(
z w
−w z

)}
⊂M2(C)

Then ‖A‖2 = detA defines a norm on H ' R4 and SU(2) is the unit sphere in H with
respect to this norm. If A ∈ SU(2),

‖AX‖ = ‖X‖ = ‖XA‖ ∀X ∈ H

(since detA = 1). So SU(2) acts on H on both left and right by isometries. So after
normalisation, usual integration on S3 defines a Haar integral on SU(2), i.e.∫

SU(2)
f =

1

2π2

∫
S3

f

Here 1
2π2 is the volume of S3 in R4 with respect to usual measure. We now try to

understand conjugacy classes in SU(2). Let

T =

{(
z 0
0 z−1

) ∣∣∣∣∣ z ∈ S1

}
≤ SU(2)

Proposition.

(i) Every conjugacy clsas in SU(2) contains an element of T

(ii) More precisely, if O is a conjugacy class in SU(2), O ∩ T = {t, t−1} for some
t ∈ T . If t = t−1, t = ±I and O = {t}.

(iii) There is a continuous bijection

{conjugacy classes in SU(2)} → [−1, 1)

A 7→ 1

2
TrA
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(i) Every unitary matrix has an orthonormal basis of eigenvectors. That is, for A ∈
SU(2), there exists P ∈ U(2) such that P−1AP ∈ T . Then if Q = 1√

detP
P ∈ SU(2),

Q−1AQ = P−1AP ∈ T , i.e. [A]SU(2) ∩ T 6= ∅.

(ii) If A = ±I the claim is clear. Otherwise

[A]SU(2) = [t]SU(2) for some t ∈ T
= {gtg−1 | g ∈ SU(2)}

All elements of gtg−1 have the same eigenvalues as t. So if t′ = gtg−1 ∈ T then
t′ ∈ n{t±1}, i.e. [A]SU(2) ∩ T ⊆ {t±1}. But if

s =

(
0 1
−1 0

)
∈ SU(2)

then sts−1 = t−1.

(iii) [A]SU(2) 7→ 1
2 TrA is well-defined and injective since conjugate matrices have the

same trace and if 1
2 TrA = 1

2 TrB for A,B ∈ SU(2), since detA = detB = 1, then
A and B have the same characteristic polynomial and hence the same eigenvalues,
so by (ii) they are conjugate. Moreover

1

2
Tr

(
e−iθ 0
0 e−iθ

)
= cos θ

so the image of our map is [−1, 1).

Corollary. A (continuous) class function f : SU(2) → C is determined by its
restriction to T and f |T is even, i.e.

f

((
z 0
0 z−1

))
= f

((
z−1 0
0 z

))
∀z ∈ S1.

We’ll write
f(z) = f

((
z 0
0 z−1

))
for z ∈ S1 i.e. identify T and S1.

Notation. We’ll write

Z[z, z−1)ev = {f ∈ Z[z, z−1) | f(z) = f(z−1)}

=
{∑

anz
n | an ∈ Z, an = a−n∀n ∈ Z

}
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Lemma. If χ is a character of a representation of SU(2) then χ|T ∈ Z[z, z−1)ev.

It follows that R(SU(2)) . Z[z, z−1)ev and we’re going to see that it is an equality.

Proof. If V is a representation of SU(2) and χ its character, then

χ|T = χ
Res

SU(2)
T V

since every character of T ∼= S1 lies in Z[z, z−1) and χ|T is even, we’re done.

Let’s write
Ox =

{
A ∈ SU(2) | 1

2
TrA = x

}
for x ∈ [−1, 1). These are the conjugacy classes of SU(2), O1 = {I}, O−1 = {−I} and
for −1 < x < 1. There is some (unique) θ ∈ (0, π) such that cos θ = x and

Ox =

{(
a b

−b a

) ∣∣∣∣ (Im a)2 + |b|2 = 1− x2 = sin2 θ

}
(since Re a = x). That is Ox is a 2-sphere of radius | sin θ|.

Thus if f is a class function on SU(2), since f is constant on Ocos θ,∫
SU(2)

f(g)dg =
1

2π2

∫ π

0

[∫
Ocos θ

f(eiθ)

]
dθ

=
1

2π2

∫ π

0
4π sin2 θf(eiθ)dθ

=
1

π

∫ 2π

0
f(eiθ) sin2 θdθ
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since f is even. Note this is normalised correctly since

1

π

∫ 2π

0
sin2 θdθ =

π

π
= 1.

So we can compute 〈f, g〉SU(2) on class functiosn (and so characters) as

〈f, g〉SU(2) =
1

π

∫ 2π

0
f(eiθ)g(eiθ) sin2 θdθ

8.5 Representations of SU(2)

Let Vn be the C-vector space of homogeneous polynomials in x and y of degree n. So

Vn =
n⊕
i=1

Cxiyn−i

has dimension n+ 1. GL2(C) acts on Vn via

ρn : GL2(C)→ GL(Vn)

ρn

((
a b
c d

))
(f(x, y)) = f(ax+ cy, bx+ dy)

i.e.
ρn

((
a b
c d

))
xiyi = (ax+ cy)i(bx+ dy)j .

Example. V0 = C is the trivial representation.

V1 = Cx ⊕ Cy is the natural representation of GL2(C) on C2 with respect to basis
x, y.

V2 = Cx2 ⊕ Cxy ⊕ Cy2 and with respect to this basis,

ρ2

((
a b
c d

))
=

 a2 ab b2

2ac ad+ bc 2bd
c2 cd d2



In general Vn ' SnV1 as representations of GL2(C).

Since SU(2) is a subgroup of GL2(C) we can view these Vn as representations of SU(2)
by restriction. In fact we’ll see the Vn are precisely the irreducible representations of
SU(2).
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Let’s compute χVn |T of (ρn, Vn).

ρn

((
z 0
0 z−1

))
(ziyj) = (zx)i(z−1y)j = zi−jxiyj

So for each 0 ≤ j ≤ n, Cxjyn−j is a 1-dimensional representation of T with character
z2j−n and

χVn(z) = zn + zn−2 + zn−4 + · · ·+ z2−n + z−n =
zn+1 − z−(n+1)

z − z−1
∈ Z[z, z−1)ev

Theorem. Each Vn is irreducible as a representation of SU(2).

Proof. Let 0 6= W ≤ Vn be SU(2)-invariant. We must show W = Vn. W is also T -
invariant as Res SU(2)

T Vn =
⊕n

j=0Cxjyn−j is as direct sum of non-isomorphic 1-dimensional
subrepresentations. (∗) W has a basis that is a subset of {xjyn−j | 0 ≤ j ≤ n} (unique-
ness of isotypical decomposition). Thus xjyn−j ∈W for some 0 ≤ j ≤ n.

1√
2

(
1 1
−1 1

)
xjyn− j = 1√

2
(x− y)j(x+ y)n−j ∈W

so by (∗), xn ∈ W . Repeat the same calculation for j = n, we get (x − y)n ∈ W . So
xiyn−i ∈W for all 0 ≤ i ≤ n and W = Vn.

Exercise (Alternative proof): Show

〈χVn , χVn〉SU(2) =
1

2π

∫ 2π

0

(
e(n+1)iθ − e−(n+1)iθ

eiθ − e−iθ

)2

sin2 θdθ = 1

Theorem. Every irreducible representation of SU(2) is isomorphic to Vn for some
n ≥ 0.

Proof. Let V be an irreducible representation of SU(2), χV |T ∈ Z[z, z−1)ev. Let χn =
χVn |T for n ≥ 0, so χ0 = 1, χ1 = z + z−1, χ2 = z2 + 1 + z−2 etc. It is easy to see

that there exists λ0, λ1, . . . , λm ∈ Z such that χV |T =
∑n

i=0 λiχi. By Orthogonality of
characters,

λi = 〈χV , χVi〉SU(2) =

{
1 if V ' Vi
0 if V 6' Vi

Since χV 6= 0 there is some i such that λi = 1 and χV = χVi .
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We want to understand ⊗ for representations of SU(2). We know

χV⊗W = χV χW

for representations V and W of any group G. Let’s compute some examples:

χV1⊗V2(z) = (z + z−1)2 = z2 + 2 + z−2 = χV2 + χV0

so χV1 ⊗ χV1 ' V2 ⊕ V0.

χV1⊗V2(z) = (z + z−1)(z2 + 1 + z−2) = z3 + z + z−1 + z + z−1 + z−3 = χV3(z) + χV1(z)

so V1 ⊗ V2 ' V3 ⊕ V1.

Start of
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Vn ⊗ Vm ' Vn+m ⊕ Vn+m−2 ⊕ · · · ⊕ V|n−m|

Proof. Without loss of generality n ≥ m. Then

(χnχm)(z) =

(
zn+1 − z−(n+1)

z − z−1

)
(zm + zm−1 + · · ·+ z−m)

=

m∑
j=0

(
zn+m+1−2j − z−n+m+1−2j

z − z−1

)

=

m∑
j=0

χn+m−2j(z)

8.6 Representations of SO(3)

Proposition. The action of SU(2) on the 3D R-normed vector space{(
a b

−b a

) ∣∣∣∣ a+ a = 0

}
⊆M2(C)

with norm ‖A‖2 = detA by conjugation induces an isomorphism of topological
groups

SU(2)

{±I}
→ SO(3).
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Proof. See Example Sheet 4, Question 4 (for more hints see lecturers notes from 2012).

Corollary. Every irreducible representation of SO(3) is of the form V2n for some
n ≥ 0.

Proof. It follows from the previous proposition that the irreducible representation of
SO(3) correspond to irreducible representations of SU(2) whose kernel contains ±I. But
it is easy to see that −I acts on Vn by (−1)n.
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9 Character table of GL2(Fq)

9.1 Fq

Let p > 2 be a prime, q = pa a power of p for some a > 0 and let Fq be the field with
q elements. We know that F×

q ' Cq−1 and F×
q → F×

q , x 7→ x2 is a homomorphism with
kernel {±1}. Thus half the elements are squares and half are not. Moreover, x 7→ x

q−1
2

sends squares to 1 and non-squares to −1. Let ε ∈ F×
q be a fixed non-square. So

ε
q−1
2 = −1 and let

Fq2 = {a+ b
√
ε | a, b ∈ Fq}

the field extension of Fq (with respect to the obvious operations) of order q2.

Every element of Fq has a square root in F2
q , since if λ ∈ Fq is a non-square then λ

ε
is a square, µ2 say, and (

√
εµ)2 = εµ2 = λ. Thus every quadratic polynomial with

coefficients in Fq factorises over F2
q . Notice (a + b

√
ε)q = aq + bqε

q−1
2 = a − b

√
ε since

p |
(
q
i

)
for 0 < i < q.

Thus the roots of an irreducible quadratic over Fq are of the form λ, λq (λ 7→ λq is like
complex conjugation).

9.2 GL2(Fq) and its conjugacy classes

We want to compute the character table of the group

GL2(Fq) =
{(

a b
c d

) ∣∣∣∣ a, b, c, d ∈ Fq, ad− bc 6= 0

}
.

The order of GL2(Fq) is equal to the number of bases for F2
q over Fq. This is (q2−1)(q2−

q) = q(q − 1)2(q + 1). First we compute the conjugacy classes of GL2(Fq) =: G. We
know from linear algebra (rational canonical form) that for A ∈ G, [A]G is determined
by mA(x), the minimal polynomial and degmA(x) ≤ 2 (Cayley-Hamilton). Moreover
mA(0) 6= 0.

There are 4 cases:

C1se 1: mA(x) = (x− λ) for some λ ∈ F×
q . Then A = λI so CG(A) = G and |[A]G| =

|{λI}| = 1. There are q − 1 such classes – one for each λ.

C2se 2: mA(x) = (x− λ)2 for some λ ∈ F×
q . Then

[A]G =

[(
λ 1
0 λ

)]
G
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Now
CG

((
λ 1
0 λ

))
=

{(
a b
0 a

) ∣∣∣∣ a, b ∈ Fq, a 6= 0

}
(compute!). So

|[A]G| =
q(q − 1)2(q + 1)

(q − 1)q
= (q − 1)(q + 1).

There are q − 1 such classes – one for each λ.

C3se 3: mA(x) = (x− λ)(x− µ) for λ, µ ∈ F×
q distinct. So

[A]G =

[(
λ 0
0 µ

)]
=

[(
µ 0
0 λ

)]
G

Moreover
CG

((
λ 0
0 µ

))
=

{(
a 0
0 d

) ∣∣∣∣ a, d ∈ F×
q

}
=: T

so
|[A]G| =

q(q − 1)2(q + 1)

(q − 1)2
= q(q + 1)

There are
(
q−1
2

)
such classes – one for each pair λ, µ.

C4se 4: mA(x) is irreducible over Fq of degree 2. So for some α ∈ Fq2 \Fq, α = λ+µ
√
ε

for some λ, µ ∈ Fq, µ 6= 0,

mA(x) = (x− α)(x− αq)
= (x2 − (α+ αq)x+ ααq)

= (x2 − (TrA)x+ detA)

Then
[A]G =

[(
λ εµ
µ λ

)]
G

=

[(
λ −εµ
−µ λ

)]
G

Since these matrices have trace 2λ = α+ αq and detλ2 − εµ2 = ααq. Now

Cg

((
λ εµ
µ λ

))
=

{(
a εb
b a

) ∣∣∣∣ a, b ∈ Fq, a2 − εb2 6= 0

}
=: K

If a2 − ε2b = 0, then a2 = εb2 so ε is a square or a = b = 0. So |K| = q2 − 1
and

|[A]G| =
q(q − 1)2(q + 1)

(q − 1)(q + 1)
= q(q − 1).

There are q(q−1)
2 =

(
q
2

)
such classes – one for each pair {α, αq} ⊂ Fq2 \ Fq.

In summary:
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Rep A CG |[A]G| # classes
λI G 1 q − 1(
λ 1
0 λ

) {(
a b
0 a

)}
(q − 1)(q + 1) q − 1(

λ 0
0 µ

)
T q(q + 1)

(
q−1
2

)
(
λ εµ
µ λ

)
K q(q − 1)

(
q
2

)
The groups T and K are both called maximal tori, i.e. they are maximal subgroups such
that they are conjugate to a diagonal subgroup in GL2(F) for some F/Fq. T is called
split and K is called non-split.

Some other important subgroups of G are

• The subgroup of scalar matrices (the centre of G):

Z = {λI | λ ∈ F×
q }.

• A Sylow-p-subgroup of G

N =

{(
1 b
0 1

) ∣∣∣∣ b ∈ Fq
}

so
ZN =

{(
a b
0 a

) ∣∣∣∣ a, b ∈ Fq, a 6= 0

}

• A Borel subgroup of G

B =

{(
a b
0 d

) ∣∣∣∣ a, d ∈ F×
q , b ∈ Fq

}

Then N E B and B/N ' T ' F×
q × F×

q ' Cq−1 × Cq−1.

Start of
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9.3 The character table of B

As a warm-up we compute the character table of

B =

{(
a b
c d

) ∣∣∣∣ a, d ∈ F×
q , b ∈ Fq

}
≤ G,
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a group of order (q − 1)2q.

Recall
N =

{(
1 b
0 b

) ∣∣∣∣ b ∈ Fq
}

E B

and

B/N ' T ' F×
q F×

q(
a b
0 d

)
N →

(
a 0
0 d

)
The conjugacy classes in B are

Rep CB size of class #classes(
λ 0
0 λ

)
B 1 q − 1(

λ 1
0 λ

)
ZN q − 1 q − 1(

λ 0
0 µ

)
T q (q − 1)(q − 2)

Moreover if Θq : {representations F×
q → C×} then Θq is a cyclic group of order q − 1

under pointwise operations since F×
q ' Cq−1 and for each pair θ, φ ∈ Θq we can define a

1-dimensional representation of B (factoring through B/N) given by

χθ,φ

((
a b
0 d

))
= θ(a)φ(d)

giving (q − 1)2 1-dimensional representations. We will build the remaining irreducible
?? of B by induction from ZN .

ZN ' F×
q × (Fq,+)(

a b
0 a

)
7→ (a, a−1b)

so given a 1-dimensional representation γ : (Fq,+) → C× and θ ∈ Θq, we can define a
1-dimensional representation of ZN

ρθ,γ : ZN → C×(
a b
0 a

)
7→ θ(a)γ(a−1b)

Now ZN E B, so by Mackey’s irreducibility criterion,

IndBZNρθ,γ is irreducible ⇐⇒ gρθ,γ 6= ρθ,γ
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for all gZN ∈ B/ZN \ ZN/ZN . Since{
tλ =

(
1 0
0 λ

) ∣∣∣∣ λ ∈ F×
q

}
is a coset representative for B/ZN and

tλρθ,γ

((
a b
0 a

))
= ρθ,γ

((
1 0
0 λ−1

)(
a b
0 a

)(
1 0
0 λ

))
= ρθ,γ

((
a λb
0 a

))
= θ(a)γ(a−1λb)

We see that
tλρθ,γ = ρθ,γ ⇐⇒ γ(λb) = γ(b) ∀b ∈ (Fq,+)

⇐⇒ γ((λ− 1)b) = 1 ∀b ∈ Fq
⇐⇒ γ = 1Fq or λ = 1

So IndBZNρθ,γ is irreducible if and only if γ 6= 1Fq .

Now since
(IndBZN ) =

∑
[g]ZN⊆[b]B

|CB(b)|
|CZN (g)|

χ(g).

We can compute

(IndBZNρθ,γ)

((
λ 0
0 λ

))
=
|B|
|ZN |

ρθ,γ

((
λ 0
0 λ

))
= (q − 1)θ(λ)

(IndBZNρθ,γ)

((
λ 1
0 λ

))
=
∑
b∈F×

q

|BN |
|BN |

ρθ,γ

((
λ b
0 λ

))

= θ(λ)

∑
b∈Fq

γ(λ−1b)

− 1


= θ(λ)(q〈γ,1Fq〉(Fq ,+) − 1)

=

{
−θ(λ) γ 6= Fq
(q − 1)θ(λ) γ = 1Fq

IndBZN =

((
λ 0
0 µ

))
= 0 (λ 6= µ)

Let µθ := IndBZNρθ,γ for γ 6= 1Fq , noting this does not depend on the choice of γ. Then
each µθ is irreducible by earlier calculation and we have q−1 irreducible representations
of B all of degree q − 1.

Thus the character table of B is
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(
λ 0
0 λ

) (
λ 1
0 λ

) (
λ 0
0 µ

)
χθ,φ θ(λ)φ(λ) θ(λ)φ(λ) θ(λ)φ(µ) θ, φ ∈ Θq

µθ (q − 1)θ(λ) −θ(λ) 0 θ ∈ Θq

Remark.

(1) The 0 in the bottom right corner appears in (q − 1) rows and (q − 1)(q − 2)
columns. They are all forced to be 0 by a Lemma from Section 7.3, since order
of the conjugacy class is q and the dimension of an irreducible representation
are coprime and these elements don’t act by scalars since the representations
are faithful and the elements are not in the centre.

(2)

B = Z ×
{(

a b
0 1

) ∣∣∣∣ a ∈ F×
q , b ∈ Fq

}
and the second factor is a Frobenius group, so Example Sheet 3, Question 10
tells us that ?? of the second factor arise essentially as we have constructed
them.

9.4 The character table of G

As det : G→ F×
q is a surjective group homomorphism, for each θ ∈ Θq, θ ◦det : G→ C×

is a distinct 1-dimensional representation of G. We get q − 1 in all. Next we’ll do
induction from B. Define

s =

(
0 1
1 0

)
∈ G,

and note that (
a b
0 d

)(
0 1
1 0

)(
1 β
0 1

)
=

(
b a+ bβ
d βd

)
These elements are all disinct. Hence

|BsN | = q|B| = |G \B|

(G/B has order q+ 1). Thus BsN = BsB and G = B ⊥⊥ BsB (Bruhat decomposition)
and B\G/B = {B,BsB}. By the proof of Mackey’s irreducibility criterion,

〈IndGBχ, IndGBχ〉G = 〈χ, χ〉B + 〈ResBB∩sBχ,Res
sB
B∩sB

sχ〉B∩sB

Now
s

(
a b
0 d

)
s−1 =

(
d 0
b a

)
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So B ∩ sB = T and

〈IndGBχ, IndGBχ〉G = 〈χ, χ〉B + 〈χ|T , sχ|T 〉T

where
(sχ)

((
a 0
0 d

))
= χ

((
d 0
0 a

))
Thus Wθ,γ := IndGBχθ,φ is irreducible if θ 6= φ ∈ Θq. These are called principal series
representations. We can also compute Wθ,θ has 2 distinct irreducible summands:

〈IndGBµθ, IndGBµθ〉 = 1 +
1

|T |
∑
λ∈F×

q

|(q − 1)θ(λ)|2 = 1 +
(q − 1)3

(q − 1)2
= q.

For any character χ of B,

(IndGBχ)(g) =
∑

[b]B⊆[g]G

|CG(g)|
|CB(b)|

χ(b)

(IndGBχ)

((
λ 0
0 λ

))
= (q + 1)χ

((
λ 0
0 λ

))
(IndGBχ)

((
λ 1
0 λ

))
= χ

((
λ 1
0 λ

))
(IndGBχ)

((
λ 0
0 µ

))
= χ

((
λ 0
0 µ

))
+ χ

((
µ 0
0 λ

))
(IndGBχ)

((
λ εµ
µ λ

))
= 0

Notice Wθ,φ ' Wφ,θ so so get
(
q−1
2

)
principal series representations. Also, Wθ,θ =

χθ ⊗W1,1 and
W1,1 = IndGB1 = C(G/B)

is a permutation representation. Thus W1,1 = C⊕ V1 with V1 an (explicit) irreducible
representation of degree q (the Steinberg representation) and Wθ,θ = χθ ⊕ Vθ where
Vθ = θ⊗V1 (a twisted Steinbery representation). We’ve explicitly constructed (q− 1)+(
q−1
2

)
+ (q − 1) irreducible representations. We have

(
q
2

)
irreducible representations to

go. It will turn out that they are indexed by irreducible representations of K such that
ϕ 6= ϕq up to ϕ ↔ ϕq. We won’t explicitly construct these representations, just their
characters.
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We have found:

IndGBµθ(g) =



(q2 − 1)θ(λ) [g]G =

[(
λ 0

0 λ

)]
G

−θ(λ) [g]G =

[(
λ 1

0 λ

)]
G

0 otherwise

and
〈IndGBµθ, IndGBµθ〉G = q.

Our next strategy is to induce characters from K:

Fq2 →M2(Fq)

λ+ µ
√
ε 7→

(
λ εµ
µ λ

)
induces an isomorphism of rings Fq2 to K ∪{0}. We will identify these rings. Under this
identification,

F×
q ↔ Z

λ↔
(
λ 0
0 λ

)
Moreover (

λ εµ
µ λ

)q
=

(
λ −εµ
−µ λ

)
since (λ+ µ

√
ε)q = (λ− µ

√
ε).

We want to understand IndGKϕ for an (irreducible) character ϕ of K. First we consider
the double cosets K\G/K and then use Mackey to compute 〈IndGKϕ, IndGKϕ〉G. For
k ∈ K, g ∈ G,

kgK = gK ⇐⇒ g−1kg ∈ K
⇐⇒ g−1kg ∈ {k, kq}

([k]G ∩K = {k, kq}). Writing

t =

(
1 0
0 −1

)
we get

t−1

(
λ εµ
µ λ

)
t =

(
λ −εµ
−µ λ

)
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so kgK = gK ⇐⇒ g−1kg = k or (tg)−1k(tg) = k. Furthermore since

CG

((
λ εµ
µ λ

))
=

{
K if µ 6= 0

G if µ = 0

so kgK = gK ⇐⇒ gK ∈ {K, tK} or k ∈ Z. It follows that

|KgK| =


|K| g ∈ K ∪ tK∣∣∣∣K2

∣∣∣∣ |K|︸ ︷︷ ︸
=(q2−1)(q+1)

otherwise

so there are
|G| − 2|K|∣∣K

2

∣∣ |K| =

|G|
|K| − 2∣∣K

2

∣∣ =
q(q − 1)− 2

q + 1
= q − 2

double cosets of size
∣∣K
2

∣∣ |K|.
Now K ∩ tK = K, K ∩ gK = Z if g /∈ K ∪ tK. Thus by Mackey,

〈IndGKϕ, IndGK〉G = 〈ϕ,ϕ〉K + 〈ϕ, tϕ〉K +
∑

g∈K\G/K−{K,tK}

〈ϕ|Z , gϕ|Z〉Z .

Since gϕ|Z = ϕ|Z for all g ∈ G, tϕ = ϕq. So if ϕ has degree 1.

〈IndGKϕ, IndGKϕ〉G =

{
q − 1 ϕ 6= ϕq

q ϕ = ϕq

Next we compute

IndGKϕ(g) =


q(q − 1)ϕ(λ) g =

(
λ 0

0 λ

)
ϕ(α) + ϕq(α) g = α ∈ Fq2 \ Fq
0 otherwise

We can compute

〈IndGBµθ IndGKu〉G =
1

|G|

(∑
λ∈Z

(q2 − 1)θ(λ)q(q − 1)ϕ(λ) + 0

)
= |Z|〈θ, ϕ|Z〉Z
= q − 1 if θ = ϕ|Z
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If βϕ = IndGBµθ = IndGBµθ − IndGKϕ for θ = ϕ|Z .

〈βϕ, βϕ〉G = 〈IndGBµθ, IndGBµθ〉G − 2〈IndGBµθ, IndGKϕ〉G + 〈IndGKϕ, IndGKϕ〉

= q − 2(q − 1) +

{
q − 1 ϕ 6= ϕq

q ϕ = ϕq

=

{
1 if ϕ 6= ϕq

2 if ϕ = ϕq

Also
βϕ

((
1 0
0 1

))
= (q2 − 1)− (q)(q − 1) = q − 1 > 0

It follows that βϕ is an irreducible character whenever ϕ 6= ϕq. Since βϕ = βϕq , ϕq2 = ϕ
and

|{ϕ : ϕq 6= ϕ}| = q − 1

We et
(q2 − 1)− (q − 1)

2
=

(
q

2

)
irreducible characters in this way.

(
λ 0
0 λ

) (
λ 1
0 λ

) (
λ 0
0 µ

)
α, αq #reps

χθ θ(λ)2 θ(λ)2 θ(λ)θ(µ) θ(αq+1) q − 1
Vθ qθ(λ)2 0 θ(λ)θ(µ) −θ(αq+1) q − 1

Wθ,φ (q + 1)θ(λφ(λ) θ(λ)φ(λ) θ(λ)φ(µ) + φ(λ)θ(µ) 0
(
q−1
2

)
βϕ (q − 1)ϕ(λ) −ϕ(λ) 0 −(ϕ+ ϕq)(α)

(
q
2

)
We have not compute the representations corresponding to βϕ explicitly. These are
known as discrete series representations.

Drufield found these in l-adic étale cohomology groups of an explicit algebraic curve
X/Fq. They can also be found as p-adic de Rham cohomology groups over a similar
space. These can be viewed as generalisations of ‘functions on X’. This work was
generalised by Deligne-Lusztig for all “finite groups of lie type”. Our computation also
allows us to compute the character table of PGL2(Fq) = GL2(Fq)

Z as its representations
are just irreducible representations of G where Z acts trivially, i.e. χθ, Vθ for θ2 = 1,
Wθ,θ−1 for θ 6= θ−1 and βϕ such that ϕ|Z = 1Z (i.e. ϕq+1 = 1 as well as ϕq 6= ϕ). We
can then also compute the character table of PSL2(Fq) = SL2(Fq)

(±I) which has index 2 in
PGL2(Fq). These groups PSL2(Fq) are simple if q ≥ 5 and this can be seen from the
character table.
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