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1 Introduction

What is Representation Theory?

The study of how symmetry occurs in nature
~—— ~——
groups act linearly on finite dimensional vector spaces

Main goal: Understand for a given group G all the ways it can act linearly on a finite
dimensional vector space, i.e. classify them. Subproblem: What does it mean for two
such to be the “same”? How do they break into smaller pieces?

Secondary goal: Use representations to understand groups, e.g. give a proof that no
finite simple group has order with precisely two prime factors.

1.1 Linear Algebra Revision

By vector space we will always mean finite dimensional vector space (unless we say not)
over a field k. k will usually be algebraically closed and characteristic zero, for example
C, but that is because it is an easy first case, but theories are normally more general
and sometimes we’ll look at these.

Given a vector space V we define the general linear group of V'
GL(V) = Aut(V) ={a: V — V| a is k-linear and invertible}
This is a group under composition of linear maps.

Since V is finite dimensional, there is a (linear) isomorphism k¢ ~ V for some d > 0
called the dimension. The choice of isomorphism determines a basis ey, ..., eq of B where
ey is the image of the i-th standard basis vector under the isomorphism.

Then
GL(B) ~ {A € Maty(k) | det A # 0}

group under matrix multiplication

This isomorphism sends a linear map « to the matrix A;; such that
d
a(ei) = Z Ajiej
j=1

Exercise: check that this does define an isomorphism of groups.
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The choice of isomorphism also gives a decomposition of V' as a direct sum of 1 dimen-
sional subspaces

d
V =Pke;
=1

This decomposition is not unique unless d = 1, but the number of summands is always
dim V.

1.2 Group Representation — Definitions and Examples

Recall that an action of a group G on a set X is a function - : Gx X — X, (¢g,2) — g-x
such that

(i) ez =z Vo € X;
(ii)) g- (h-z) = (gh) -z Vg,h € G,z € X.

Recall also that to define an action is equivalent to defining a group homomorphism
p: G — S(X) where S(X) is the symmetric group of X i.e. the set of bijections X — X
with operation composition of functions via p(g)(z) =¢-x for all g € G,z € X.

Definition (Representation). A representation of a group G on a vector space V'
is a group homomorphism p : G — GL(V).

Notation. By abuse of notation, we’ll sometimes call the representation p, some-
times (p, V') and sometimes just V.

Defining a representation of G in V' corresponds to assigning a linear map p(g) : V — V
to each g € G such that

(i) pe) =idy
(ii) p(gh) = p(g)p(h)
(iii) p(g~") = p(g)~"

Exercise: Show that if condition (ii) holds then (i) is equivalent to (iii). Moreover,
both can be replaced by p(g) € GL(V) Vg € G.

Given a basis for V' a representation can be viewed as an assignment of matrix p(g) in
Matgim v (k) to each g € G such that (i), (ii) and (iii) hold.



Definition (Degree of representation). The degree of p or dimension of p is dim V.

~

J

Definition (Faithful representation). p is faithful if ker p = {e}.

Examples

(1)

(2)

()

Let G be any group and V' = k. Then p : G — GL(k), g — id is called the trivial
representation.

Let G = Cy = ({£1},+), V = R? then

defines a representation of G on V since p(—1)% = p(1).

Let G = (Z,+), V a vector space and p a representation of G on V. Necessarily
p(0) = idy, p(1) : V < V is an invertible linear map «, say p(1+1) = p(1) = o?. By
induction p(n) = o™ for all n > 0, and for n < 0, p(n) = p(—n)~! = (™)~ = o
so p(n) = ™ for all n € Z.

Notice conversely for any o € GL(V), p(n) = o™ Vn € Z defines a representation of
GonV. So
{representations of G on V'} = GL(V)
prp(1)

Let G = (Z/NZ,+) and p : G — GL(V) a representation. As before p(n + NZ) =
p(1+ NZ)" for all n € Z. But now p(N + NZ) = p(0+ NZ) = idy so p(1+ NZ)N =
idy. So

{representations of (Z/NZ,+) on V'} P= {a e GL(V) | & =id}
p— p(l+ NZ)

G = S5 = 5({1,2,3}) and V = R2. Take an equilateral triangle in R? centred at the
origin and labelled vertices 1,2, 3.
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Then G acts on the triangle by permuting vertices. Each such symmetry induces a
linear transformation of R? = V. For example g = (12) induces reflection in the line
through the origin and 3, and g = (123) induces a rotation by %’r

Exercise: Choose a basis for R?. Write down the coordinates of the vertices of
triangle. For g € S3 write down the matrix of the induced linear map. Check it
defines a representation. Would a different basis have made the calculation easier?

(6) Given a finite set X we can form the vector space

kX = {f: X =k}

with pointwise operations. This has a basis (0, : x € X) where 0,(y) = dxy for
ye X. If fekX then f=3%" s f(2)ds.

If a group G acts on X, we can define
p: G — Aut(kX)p(g)(f)(x) =flg7'e) VfekX,geGureX

If is easy to check p(g) is linear for all ¢ € G and p(e) = idgx. So it suffices to
show p(gh) = p(g)p(h) Yg,h € G. To show this, note that for all g,h € G, f € kX,
x € X, we have

as required. Note that for g € G, z,y € G,
((9)02) (W) = 62(97"y) = b g1y = Ggay = O (v)
So by linearity p(g) (3_ f(2)d2) = >- e x [(2)dga-
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(7)

In particular if G is finite then G acts on itself by left multiplication G x G — G,
(g,h) — gh. This induces a representation of G on kG, called the regular repre-
sentation. If g € G then p(g)(de) = 64 s0 p(g) = e <= g = e. So the regular
representation is always faithful.

If (p,V) is a representation of G we can define a representation p* of G on V* as
follows
P90 (w) =09 ") VgeG0eViveV

p*(g) can be viewed as the adjoint of p(g)~! and recall that with respect to a pair of
dual bases for V and V*, the matrix of the adjoint of a linear map is the transpose of
the matrix of the map. Soif V = k%so p: G — GLg4(k) then p*(g) = (p(g)~") . This
is a homomorphism because GLg(k) — GLg(k), A+ (A~ T is a homomorphism.

More generally, if (p, V) and (o, W) are two representations of G then (7, Homy (V, W))
is a representation of G as follows

7(9)(a) =o(g)oaop(g)” Vg€ G,acHomy(V,W)
Exercise: check the details (this is on Example Sheet 1).

Note that if W = k is the trivial representation then we recover the previous example.
Moreover if V' = k™, W = k™ with the standard bases (so Homy (V, W) = Mat,, ,,(k))
then 7(g)(A) = a(g9)Ap(g)~! for all g € G, A € Maty, (k).

If p: G — GL(V) is a representation (of G) and 0 : H — G is a group homomorphism
then pf : H — GL(V) is a representation off H. If H < G and 6 is the inclusion
map then we call this the restriction of p to H.

1.3 The Category of Representations

If p: G — GL(V) is a representation and ¢ : V' — W is a homomorphism of vector
spaces then o : G — GL(W) defined by o(g) = p o p(g) o ¢! for all g € G.

Definition (Isomorphic Representations). We say that p : G — GL(V) and
o : G — GL(W) are isomorphic representations if there exists ¢ : V. — W a k-linear
isomorphism such that

We say ¢ intertwines p and o.

~

o(g)=¢poplg)op™t VgeG

Note that:



(1) idy intertwines p and p.

(2) If o intertwines p and o then o1

intertwines o and p.
(3) If ¢ intertwines p and o and ¢’ intertwines o and 7, then ¢’ o ¢ intertwines p and 7.

Therefore this definition of isomorphism is an equivalence relation.

Since every vector space is isomorphic to k¢ for some d > 0, every representation is
isomorphic to a matrix representation.

If p,o : G — GL4(k) are matrix representations of the same degree then an intertwining
map from p to o is an invertible matrix P € GL4(k) such that

o(g) = Pp(g)P~!  Vge&
Thus matrix representations are isomorphic precisely if they represent the same family

of maps with respect to different bases.

Example.
(1) If G = {e} then (p, V) and (o, W) are isomorphic if and only if dim V' = dim W'.

(2) If G = (Z,+), then (p,V) and (o, W) are isomorphic if and only if there are
bases for V' and W such that p(1) and o(1) are the same matrix. So

{representations of (Z,+)}/ ~<> {conjugacy classes of invertible matrices}

If k = C the RHS is classified by Jordan Normal Form (more generally rational
canonical form).

(3) If G = Cy = ({£1},-) then
{representations of Cy}/ ~<» {conjugacy classes of matrices A such that A% = I'}

Since the minimal polynomial of A4 in RHS divides X2 — 1 = (X — 1)(X + 1)
(which has distinct roots if characteristic of k is not 2), every such matrix is
conjugate to a diagonal matrix and all diagonal entries are 1 or —1.

Exercise: Show that there are precisely n + 1 isomorphism classes of represen-
tations of Cy of degree n (for any field of characteristic not equal to 2).

(4) If G acts on sets X and Y and there is a bijection f : X — Y such that
g-(f(z)) = f(g- =) for all g € G, * € X, then f induces an isomorphism of
representations f : kX — kY, f(0)(y) = 0(fy).

Exercise: check this.
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Definition (Subrepresentation). Suppose p : G — GL(V) is a representation and
W <V is a k-linear subspace. Then we say W is G-invariant if p(g)(W) C W for
all g € G.

In this case we can define a representation (pw, W) via

pw(g)(w) = p(g)(w)  VgeG,weW.

We call (pw, W) a subrepresentation of W.

Definition (Proper Subrepresentation). If W # 0 and W # V we say W is a
proper subrepresentation.

<
Definition (Irreducible Representation). We say V # 0 is irreducible or simple if
V' has no proper subrepresentations.

Examples

(1) Any 1-dimensional representation of any group is irreducible.

(2) If G = C4, p: G — GLa(k), with

0= (7 1)

(char k # 2). Then (p, k?) has exactly 2 proper subrepresentations, namely

()07

Proof. 1t is easy to see that two given subrepresentations are G-invariant, since the
vectors are p(—1)-eigenvectors. Conversely, any proper subrepresentation must have
dimension 1, so is spanned by an eigenvector of p(—1) and the eigenspaces of p(—1)
are those described above. O

(3) If G = C then any simple representation of G has dimension 1.

10
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Proof. Suppose p : G — GL(V) is an irreducible representation of G. The minimal
polynomial of p(—1) divides X2 — 1 = (X — 1)(X + 1) since p(—1)? = idy. So it
has a linear factor and p(—1) has a nonzero eigenvector v. Then p(—1)(v) C (v) but
also p(1)(v) C (v). So (v) is a G-invariant subspace of V. As V is irreducible and
(v) # 0, (V) =V has dimension 1. O

Note we see that if char k £ 2 there are precisely 2 simple representations of Cy up
to isomorphism and only 1 if char k = 2.

(4) If G = Dg, then every complex irreducible representation has degree < 2.

Proof. Let p: G — GL(V) be an irreducible representation of G. Let r be a non-
trivial rotation in G and s a reflection in G so 73 = e = 52, srs = r~! and {r, s}
generate G.

Since p(r)? = idy, the minimal polynomial of p(r) divides X3 — 1, so p(r) has an
eigenvector v with eigenvalue A such that \3 = 1.

Consider W := (v, p(s)v) < V, so dimW < 2. Now p(s)p(s)v = p(s?)v = v, and
p(r)p(s)v = p(s)p(r)~tv = A"1p(s)v, so p(s)W < W and p(R)W < W. Since r and
s generate G, it follows W is a G-invariant subspace of V.

So if V' is irreducible, must have W =V, so dim V' < 2 as required. O
Exercise: Show that there are precisely 3 irreducible representations of Dg up to

isomorphism: two of degree 1 and one of degree 2. (Hint: consider proof above and
split into cases for each value of \).

Definition (Quotient Representation). If (p, V') is a representation of G and W <
V is a G-invariant subrepresentation then we can define a quotient representation
(pV/Wa V/W) via

pvyw(9)(w + W) = p(g)(v) + W.

(This is well-defined since p(g)(W) C W¥g € G means that the choice of coset
representative doesn’t matter).

We’re going to start dropping the p now where it doesn’t cause confusion.

11



Definition (G-linear map). If (p,V) and (o, W) are two representations of G we
say a k-linear map ¢ : V. — W is G-linear if p o g = go ¢ for all g € G, i.e.
poplg) =o(g)op. We write

Homg(V, W) = {¢ € Homy(V, W) | ¢ is G-linear}

a k-vector subspace of Homy (V, W).

(1) ¢ € Homy(V,W) is an intertwining map if and only if ¢ is a bijection and ¢ €
Homg (V, W), since 0 p(g) = o(g) o p <= pop(g)ow ! =0(g).

(2) If W <V is a G-subrepresentation then the natural inclusion map
L: W = V,w— we Homg(W, V)
and the natural projection map
7:V = V/Wo—v+W eHomqg(V,V/W).

(3) Recall that Homy,(V, W) is a representation of G via g- o = gopog~! for g € G,
¢ € Homy(V,W) and ¢ € Homg(V,W) if and only if g- ¢ = ¢ for all g € G.

Lemma. If U, V and W are representations of a group G with ¢1 € Homy (V, W),
w2 € Homy (U, V') then

g (p1ow2) =(gop1)o(gop)Vy € G.
In particular, if:
s 1 € Homg(V,W) then g- (p10p2) = @10 (g-w2) forallge G
o @3 € Homg(U,V) then g- (p10p2) =(g-p1)ope forall g e G
e 1 € Hom g (V, W) and ¢y € Hom ¢(U, V)

Then ¢; 0 w2 € Hom (U, W).

Proof. With the notation in the statement,

1

(g-¢p1)o(gops)=(gopiog o(gopsog ) =go(piops)og =g (p10¢ps)

Everything else follows immediately. O

12



Lemma (First Isomorphism for Representations). Suppose V and W are two rep-
resentations of G and ¢ € Homg(V, W). Then

(i) ker ¢ is a subrepresentation of V;
(ii) im ¢ is a subrepresentation of W;
(iii) the linear isomorphism @ : V/ker¢ — im¢ given by the first isomorphism

theorem for vector spaces is an intertwining map. Thus V/ker ¢ and im ¢ are
isomorphic as representations.

Proof. (i) If v € kerp and g € G then ¢(g-v) =¢g-¢(v) =g-0=0. So g-v € kerp.
(ii) fw=¢(v) eimpand g € G then g-w =g-p(v) =¢(g-v) € imep.

(iii) We know ¥ is given by the formula $(v + ker ) = ¢(v). Then g o (v + ker p) =
g-¢) =¢(g-v) =p(g(v+kerp)).

g

Proposition. Suppose p : G — GL(V) and W < V is a subspace. Then the
following are equivalent

(i) W is a subrepresentation of V.

(ii) There exists a basis of V' such that vy,...,v, is a basis of W and each p(g)
with respect to this basis is block upper triangular:

ar;
gl U

(iii) For every basis v1,...,vg of V such that vi,...,v, is a basis of W each ¢(g)
with respect to the basis is block upper triangular as in (ii).

13
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2 Complete Reducibility and Maschke’s Theorem

Question: What can a representation V of a group G be decomposed as a direct sum
of simple subrepresentations?

Example.

(1) If G = {e} the answer is always as seen in lecture 1 since a simple subrepresen-
tation is precisely a 1 dimensional subspace.

=7 1)

we’ve seen that the proper subrepresentations of V' are

()07
#={(0))={())

is the only such decomposition.

(2) f G =Cy and V = R?,

and

(3) If G = (Z,+) and p : G — GLy(k) is determined by

p(1) = <é D

then there is precisely one proper subrepresentation

()

as any such must be spanned by an eigenvector. So this cannot be decomposed
in this way.

15



Definition (dlrect sum of representations). We say a representation V is a di-
rect sum of (V;)k_, if each V; is a subrepresentation of V and V = EBZ Vi as
vector spaces (recall direct sum notation from Linear Algebra). Given a family of
representations (p;, V;)¥_, of G, we may define the (external) direct sum to be the
representation of G on the vector space

k
@ vul\vle‘/}

with pointwise operations via

p(9)((vi)) = (pi(g)vi)

We write

k k
(P7 V) o= @ pi, Vi z @pl @Vl
=il =1

Examples

(1) Suppose G acts on a finite set X and X = X; U X with X N Xy = 0 and X7, Xo
both G stable (¢g-z € X; if z € X;, g € G). Then kX ~ kX; ® kX5 under

[ (f’X17f|X2)
Internally

kX ={f | f(x) =0Ve e Xay @ {f| f(x) =0 Ve e X1}

More generally if the G-action decomposes into orbit X = J;_; O;, then

X = @ 1o,(kX) ~ @ kO;
=1 =1
where 1p, : kX — kX given by
{ flz) ze0;

0 otherwise
(2) If G acts transitively on a finite set X then

Z f(x) = 0} and W :={f € kX | fis constant}

zeX

U::{fek:X

are subrepresentations if | X| > 1.

16



Proof. If feU and g€ G

g Ha)=)_ flgle)=> flx)=0

zeX zeX zeX

since x + ¢ 'z defines a permutation of X. So ¢g- f € U and U is G-invariant.
Similarly if f € W then there exists A € k such that for all € X, f(z) = X\ and
(g- f)(x) = f(g7'z) = \. If chark = 0 then kX = U & W is a direct sum of
representations. What happens if chark = p > 07 ]

Proposition. Suppose p : G — GL(V) is a representation and V = U & W as
vector spaces. Then the following are equivalent:

(i) V. =U @ W as representations

(ii) There is a basis v1,...,vg of V such that vq,...,v, is a basis of U and
Urgl,-..,0q is a basis of W and the corresponding matrices p(g) are block
diagonal

—
1

(g
O

(iii) For every basis vy, ..., vq of V such that vy,..., v, isabasisof U and v,41, ..., vq
is a basis of W, the corresponding matrices p(g) are all block diagonal as in

(i)

Proof. Think about it! O

-1 2

0 1
(check). The representation on R? decomposes as a direct sum of subrepresentations
(e1) and (e1 + e2) even though p(—1) is not diagonal.

Warning. p : Co — GL2(R), p(—1) = ( ) defines a representation of Co

17



Definition (completely reducible). We say a representation V of a group G is
completely reducible if
-
V=
i=1

for some irreducible representation V;.

J

We’ve seen that (Z,+) has representations that are not completely reducible, given by
11

Lemma. Suppose (p, V) is a representation such that for every pair of G-invariant
subspaces W1, Wa < V such that W; < W, there is a G-invariant complement to
W1 in WQ.

Then V is completely reducible.

Proof. By induction on dim V. If V =0 or V is irreducible the result is clear. Otherwise
V has a proper G-invariant subspace W. Then by assumption W has a G-invariant
complement U in V so V =U @ W as representations.

Now dim U,dim W < dim V and U and W inherit the condition on V. So by induction

hypothesis,
T S
v=@Pu; and W=Hw,
i=1 j=1
for some simple representations Uy, ..., U, and W1,..., Ws. Then
s S
V~Pu e Pw;
i=1 j=1
as required. O

Recall, if V' is a C-vector space then a Hermitian inner product is a positive definite
Hermitian sesquilinear form, i.e. (e,0):V x V — C such that

(i) Sesquilinear:
(ax + by, 2) =a(z,2) + b(y,z)  Va,y,z€V,a,beC

(z,ay + bz) = a(z,y) + b(x, 2) Va,y,z € V,a,b e C

18
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(ii) (z,y) = (y,z) for all x,y € V (Hermitian)
(iii) (x,x) > 0Vz eV \ {0} (positive definite)

The standard inner product on C™ is given by

n
i=1
Recall the unitary group U(n) is the subgroup of GL,(C) given by

U(n) ={A e GL,(C) | ATA=1}
={A € GL,(C) | (Az, Ay) = (z,y) Vz,y € C"}

Definition (unitary representation). A C representation of a group G is unitary if
there exists a basis eq,...,e, of V so that the corresponding matrix representation
p: G — GL,(C) has image contained in U(n).

Definition (G-invariant inner product). A Hermitian inner product on a repre-
sentation V' of G is G-invariant if (g, gy) = (x,y) for all g € G, z,y € V.

Equivalently if (gz, gx) = (z,z) Vg € G,z € V.

Proposition. A representation (p,V') of G is unitary if and only if V has a G-
invariant inner product.

Proof. 1f (p, V) is contrary let eq,...,e, be a basis with respect to which each p(g) €
U(n). Now,

D o Nien > pieg | = X

is a G-invariant inner product on V.

Conversely, if V has a G-invariant inner product(e, e), we can find an orthonormal basis
v1,...,v, of V with respect to (e,e). Then

Z)\ivi,z,ujvj = Z)TZMZ V)\,u eC”

19
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i.e. (e,0) is the standard inner product with respect to v1,...,v,, so since it is G-
invariant each p(g) is unitary with respect to this basis. O

Note subrepresentations of unitary representations are thus unitary since we can restrict
a G-invariant inner product.

Theorem. Suppose (p, V) is a unitary representation of a group G. Then every
subrepresentation W of V has a G-invariant complement. Thus V is completely
reducible.

Proof. Since V is unitary it has a G-invariant inner product (e,e). If W is a subrepre-

sentation then
Wh={veV|(vw) =0vYweW}
is a vector space complement to W in V' by standard linear algebra. Moreover, if g € G,
v e WL and w € W then
(gv,w) = (v,97'w) =0

1

since g~lw € W, so gv € W+ and W+ is a subrepresentation as required.

The last part follows from lemma proved last time. O

Theorem (Maschke’s Theorem). Let G be a finite group and (p, V') is a represen-
tation of G over k, a field of characteristic zero. Suppose W < V' is a subrepresen-
tation. Then W has a G-invariantcomplement in V. In particular, V' is completely
reducible.

Key idea: If (p,V) is a representation of a finite group G over a field k then for all
veV,

Zg-veVG:{UEVLq-U:vVgEG}§V

geG

Proof of Key idea. If h € G,

WY gv| =) (hg)-v=> g v

geG geG g'eG

since G — G, g — hg is a permutation of G and h : V — V is linear. O

20



Proposition (Weyl’s unitary trick). If V' is a C-representation of a finite group G
then V has a G-invariant inner product. Thus Maschke’s Theorem is true over C.

Proof. Pick any Hermitian inner product (e,e) on V. Then we can define a new inner
product on V via

(x,9) = > (g7, 9y)

geG

It is easy to see that (e,e) is a Hermitian inner product because (e,e) is since, for
example, if a,b € C and x,y,z € V then

(@, ay +b2) = Y _(gx,g(ay +bz))
geG

— Z(gm, ag(y) + bg(z))

geG

= Z(a(gx,gw +b(gz, gz))

geG
= a(z,y) + b(z, 2)

But now if h € G and z,y € V,

(ha,hy) = > (ghz, ghy) = > _(g'z,d'y) = (x,y)

geG g'eG

since g — gh is a permutation of G. O

( I
Remark. This proof can be phrased as follows:

(i) Herm(V') = {Hermitian sesquilinear forms} is naturally an R-vector space.

(i) G = Aut(Herm(V)), g - (e,®)|(zy) = (97 2,97 y) defines an R-linear repre-
sentation of G.

(iii) All R>%-linear combinations of positive definite elements of Herm (V') are pos-
itive definite.

(iv) The key idea transforms an inner product into a G-invariant one.
It follows that studying C-representations of a finite group is the same as studying

unitary representations of the group.
L J

21



Corollary. Every finite subgroup of GL,(C) is conjugate to a subgroup of U(n).

Proof. If G < GL,,(C) then the inclusion map p : G — GL,(C) is a representation. By
the unitary trick, there exists a basis for C™ with respect to which each p(g) € U(n), i.e.
3P € GL,(C) such that Vg € G, Pp(g)P~! € U(n). O

We now generalise to all char 0 fields.

Proof of Maschke’s Theorem. Idea: if m: V — V is a projection, i.e. 72 = 7, then V =
Im 7@ ker 7 as vector spaces. If w is G-linear then ker m and Im 7 are subrepresentations.
So Im 7 has a G-invariant complement. So we pick a projection onto W and average it.

Let 7 : V. — V be any k-linear projection onto W (so m(w) = w for all w € W and
Im7 = W). Recall that Homy(V, V) is a representation of G via g- o = gopog~!. Let
¢ = ‘Tl;' Y gec(gom) € Homg(V, V) by the key idea.

Moreover, Im 7¢ < W since g o g~ (v) € W for all v € V, g € G and

7o) =Y Zgomog ()
2-[]

and if w € W then

1 - 1 ~
mOw)= = gomogl(w)= 5> gogt(w)=w
|G| |G|
geG geG

since g~ (w) € W Vg € G,w € W. So n€ is a G-invariant linear projection onto W and
ker 7 is a G-invariant complement to W in V. O
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( N
Remark.

(1) We can explicitly compute 7% and ker 7¢ via formula

1
TFG:@ZQ-TF

geG

(2) Notice we only used char(k) = 0 when we divided by |G|. So in fact the result
holds whenever char(k) { |G|.

(3) As an extension of our key idea, for any G-representation V' (and char k 1 |G|),

is a projection in Homg(V, V') onto V&. Notice dim V& = Trr = ﬁ > gec Tr(9)
since Tr is linear.

Question: Suppose

V:@V}:@Wj

iel jeJ

with V;, W; are irreducible representations of G. Can these decompositions be different?
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3 Schur’s Lemma

Recall that if V' is a vector space then Aut(V') = GLgim v (k).

Theorem (Schur’s Lemma). Suppose V and W are irreducible representations of
a group G. Then

(i) Every ¢ € Hom ¢(V, W) is either 0 or an isomorphism;

(ii) if k is algebraically closed then dim Hom ¢ (V, W) is 0 or 1.

Proof.

(i) Note if ¢ € Hom¢(V, W) \ {0} then kerp < V is a G-invariant subspace. So as
V is irreducible, ker ¢ = 0. Similarly 0 # Im ¢ < W is a G-invariant subspace so
Imp = W. Then by First Isomorphism for Representations, ¢ is an isomorphism.

(ii) Suppose ¢1,p2 € Homg(V,W) \ {0}. By (i), ¢1 is an isomorphism such that
(pl_l oy € Hom¢(V,V). But then as k is algebraically closed, every element of
Homy(V, V) has an eigenvalue. In particular, 3\ € k such that ker(¢; "' o g —
Nidy) # 0. But ¢! o g — Aidy € Hom g(V, V). So ker(p;! o g2 — Nidy) is G-
invariant so is equal to V' (since V irreducible), i.e. ¢! 0wy = Aidy and ¢ = Ap1,
i.e. Homg(V, W) = kep;. O

This says that in particular, Hom g(V,V) = k (such that k¥ = k), so an irreducible
representation is rigid in the same sense that a 1-dimensional vector space is rigid since
their automorphism groups are the same.

Proposition. If V, V;, V5, are representations of G then
() Homg(V, Vi @ Va) ~ Hom c(V, V) @ Hom g(V, V&)

(b) Hom (Vi & V2, V) =~ Hom ¢(V1, V) & Hom ¢(V2, V)

Proof.
(a) There are natural G-linear inclusion maps ¢; : V; — Vi@ Vs for i = 1,2. These induce
by post-composition G-linear maps Homy(V,V;) — Homy(V, Vi & Vo), f — 1; 0 f.

Together these give a linear isomorphism

Homy (V, V1) @ Homg (V, Vo) — Homy(V, V1 @ V3) (f1, fo) = uif1+2f2
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Since 11, 19 are G-linear, this is an intertwining map

g-(fi+iafe) =uo(g-fi)+i2o(g- f2)

Since in general if ¢ : U — W is an intertwining map between representations of G
it induces an isomorphism on G-fixed points since g - (p(u)) = p(u) <= g-u=u
(¢ injective). It follows that there is an induced isomorphism as in (a).

(b) Since the natural projection maps m; : Vi @ Vo — V;, (v1,v2) — v; for i = 1,2 are
also G-linear and induce a G-linearisomorphism

Homy (V1,V) @ Homg (Va, V') — Homy (V4 @ Vo, V), (fi,f2) = fiom + faom

and again taking G-invariants gives the result. O

Corollary. If V ~ @, _; V; and W ~ @jeJ W; then

Hom ¢(V, W) = @@HOHIG(Vz‘a W;)

iel jeJ

Proof. This follows from the previous proposition and a simple induction argument. [

Corollary. If k =k and V ~ @;_, Vi is a decomposition of V as a direct sum of
simple representations then for each simple representation W of G

{i: Vi @ W}| = dimHom ¢(V, W) = dim Hom (W, V).

and does not depend on the choice of decomposition.

Proof. By the last result dim Hom ¢ (V, W) = @;_, Hom ¢(V;, W) so dim Hom ¢ (V, W) =
> i_y dim Hom ¢ (V;, W) and similarly dim Hom (W, V) = ", dim Hom (W, V;). Thus
it suffices to show

1 WV,

dim Hom ¢(V;, W) = dim Hom (W, V;) =
im Hom ¢( ) = dim Hom (W, V;) {0 WtV

This is part of the statement of Schur’s Lemma when k = k. O

Exercise for enthusiasts: Give a version of this corollary when k # k.
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Important question: How can we compute these numbers dim Hom ¢(V, W)? Note
our final remark last lecture may help us at least when char(k) = 0 since it said
dim V¢ = ﬁ > gec 1T p(g). So we need to understand these traces for the represen-

tation Homy (V, W).

Corollary. If G is an abelian group then every irreducible C-representation of GG
has degree 1.

Proof. Let (p,V) be a complex irreducible representation of G. For each g € G,
p(g)p(h) = p(h)p(g) for all h € G. So p(g) € Homg(V,V) = Cidy by Schur’s Lemma.
Now if v € V'\ {0} then p(g)(v) < (v) Vg € G so (v) is a G-invariant subspace of V', so
(v) =V since V is irreducible. O

Corollary. If G is a finite group with a faithful irreducible representation over an
algebraically closed field k, then Z(G) is cyclic.

Proof. Let (p,V) be a faithful irreducible representation of G and z € Z(G). Then
p(2)p(g) = p(g)p(z) for all g € G, i.e. p(z) € Homg(V,V) = kidy by Schur’s Lemma.
We can write p(z) = A;idy for A, € k, and A, ., = A, - Az, for all 21,20 € Z(G), and
Ae = 1. So Z(G) — kX, z+— A, is a faithful representation of Z(G) since V is faithful,
i.e. Z(@) is isomorphic to a finite subgroup of £*, and any such subgroup is cyclic. [

Example. G = C4 = (z). 1-dimensional C-representations of G are given by

1 ‘ T ‘ z2 ‘ z3
1|1 1 1
1| ¢ | =1 —2
1|-1] 1 | -1
1| — | —=1| ¢
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Example. Cy x Cy = (x) X (y). 1-dimensional C-representations of G are given by

1 ‘ T ‘ Y ‘ Ty
1] 1 1 1
171 |—-1]-1
1/-1] 1 | -1
1] -1]-1] 1

Proposition. If G is a finite abelian group then G has exactly |G| irreducible
C-representations.

Proof. We saw last lecture that all irreducible representations of an abelian group have

degree 1.
S = {simple representations of G}/ ~+»> Hom(G,C*)

Moreover, if G = H x K, then
HOII](G,(CX) A HOIII(H,(CX) X HOH](K,CX) Y= (@’Hy@’K)

(need C* is abelian to get surjectivity). Now by structure theorem for finite abelian
groups, G >~ Cp, X --- x (), for some ny,...n, € N. So by a simple induction argument
we can reduce to the case where G is cyclic, G = C),, = (x) say.

Then p € Hom(G,C*) is determined by p(z) and p(z)® = 1, i.e. p(z) is an n-th
root of unity. Moreover, for j = 0,...,n — 1, 2¥ — €2™75/" defines a 1-dimensional
representation of G. O

Lemma. If (p1, V1) and (p2, V2) are non-isomorphic 1-dimensional representations
of a finite group G, then

> pilg palg) =0

geG

(Note p1(g~") = p1(g) 1) = pa(g) since p1(g)? =1 for some j if k = C).

Proof. We've seen that Homy(V7, V5) is a representation of G via g-p = p2(g)owopr(g71).
Moreover,

Zg-tp € Hom¢(V1,V2) =0
geG
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by our key idea from lecture 5 and Schur’s Lemma. Pick an isomorphic ¢ € Homyg(V1, V2)
and then

0="2 p2A9)epg™) = | D_,ilg Ir2(9) | ¢

geG geG

So as  is injective, we're done. O

Definition (isotypic component). If V is a completely reducible representation
of a group G and W is any simple representation of G, the W -isotypic component
of V' is the smallest subrepresentation of V' containing all subrepresentations of V'
isomorphic to W.

This exists since if (V;);cs are subrepresentations of V' containing all subrepresentations
of V' isomorphic to W then (,c; V; is another (or we can simply take the vector space
sum of all subrepresentations isomorphic to W).

Definition (unique isotypical decomposition). We say V has a unique isotypical
decomposition if V is the direct sum of its W-isotypic component as W goes over
all simple representations of G' (up to isomorphism).

Corollary. If G is a finite abelian group, then every C-representation of V' has a
unique isotypical decomposition.

Proof. For each homomorphism 0, : G — C*, i =1,...,|G| (i.e. each simple represen-
tation of G) we can define

Wi={veV|g-v=20;(g)v Vg € G}
the 6;-isotypic component of V. Since V is completely reducible, V' = le(:;‘l W;. We
need to show that if Z'ﬁ‘l w; = 0 with w; € W; for each 4, then w; = 0 for each 7. But

|G 1G] |G|

Zwi:O = O:g-Zwi:ZHi(g)wi Vg € G
i=1 i=1 i=1

Then for each j,
1G]

DD 65(g Hilg) | wi=0

i=1 \geG
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But by the previous Lemma,

LHS = ) " 6;(97")0;(9)w; = |Gluw;

geG

Thus w; = 0 as required. O

This proof also works when C is replace by any other algebraically closed field with
characteristic 0.

You will extend this to all finite groups on Example Sheet 2.
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4 Characters

Summary so far: We want to classify all representations of a given (finite) group G.
We’ve seen when G is finite and chark = 0 then every representation decomposes as
V =@;_,n;V; with Vq,...,V, simple and pairwise non-isomorphic and n; > 0.

Moreover, if k = k then n; = dim Hom (V;, V). Next we want to discuss how to classify
irreducible (C-)representations of a finite group and understand how to compute the n;
given V. We’ll do both by character theory.

4.1 Definitions

Definition (Character). Given a representation p : G — GL(V'), the character of
p is the function G = k, x = x, = xv : G = k, g — Tr p(g).

Since for matrices Tr(BA) = Tr(AB), the character does not depend on a choice of basis
Tr(PAP™') = Tr(AP™'P) = Tr(A)

Similarly, isomorphic representations have the same character.

Example. Let G = Dg = (s,t: s> = t3 = e, sts = t~!), the dihedral group of order
6. Let G — GL2(R) be the action of G' by symmetries of a triangle. To compute x/,
we just need to know the eigenvalues of each matrix p(g). Each reflection (element
st') has eigenvalue 1, —1 so x(st') = 0 for all i. The eigenvalues of the non-trivial

rotation must be non-trivial cube roots of 1 and sum to be a real number. Thus
x(t) = x(t2) = e2™/3 4 ¢47/3 = _1. Also, x(e) = 2.

Proposition. Let (p, V') be a representation of G. Then
(i) xv(e) =dimV
(i) xv(g) = xv(hgh™) ¥g,h € G
(iii) If W is another representation, then xyew = xv + xXw

(iv) If V is unitary then xy(¢97') = xv(9)Vg € G

Proof.

(i) x(e) =Tridy = dimV
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(i) p(hgh™') = p(h)p(g9)p(h~') thus p(g) and p(hgh~!) are conjugate in GL(V) so
have the same trace.

(iii) Clear

(iv) By choosing a basis we may view p as a homomorphism G — U(n). Then p(g~!) =

-
p(9)"1 = p(g) . So Trp(g~!) = Tr(p(g)) since Tr is transpose invariant. O

The characters contain very little data: an element of k for each conjugacy class in
G. But when G is finite and £ = C, it contains all we need to reconstruct V up to
isomorphism.

~

Definition (Class function). A function f : G — kis a class function if f(hgh™1) =
f(g) Vg,h € G. We'll write C¢ for the k-vector space of class functions.

Notice that if Oy, ... O, are the conjugacy classes in G then the indicator functions

1 ge0;

1o, : G — k, —
. o {y 150

form a basis for Cg. So dim Cg = #conjugacy classes.

Start of

lecture 8
4.2 Orthogonality of characters

Assume G is always a finite group and k = C.

Recall

Co:={f:G—C: f(hgh™") = f(g) Vg,h € G} < CG
and if Oy, ..., O, are the conjugacy classes then the indicator functions 1o, ..., 1o, are
a basis.

We can define a Hermitian inner product in Cq (restricted from one on CG) via
1 _
(i foa = > hlg)fa(9)
Gl =2
The indicator functions 1o, are pairwise orthogonal with respect to (e, @) and moreover,

1 1
1o, 10, = —|0;)| = ——
< O; Oz>G ’GH | ‘CG(xz)‘
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for any z; € O;. Thus if x1,...,x, are representatives of Oy, ..., O,, then

(f1, [2)a Z|C xz)f2(x2)

for f1, f2 € Ca.

Example. If G = Dg = (s,t | s> =13 = ¢,sts7! =t71) then

(1, f2)s = ST le) + 5T fals) + s RO (0)

In particular if V is the natural 2-dimensional representation of Dg and C is the
trivial representation then

xc = lg
xv(e) =2,xv(s) =0,xv(t) = -1
1 1 1
= l4+=-14=-1=1
{xe;xehps = g-1+5-1+3
1 1 1
— or L P (P =
{(Xv,XV)Dg 2 T3 +3( )
( ) —12+10+1( 1)=0
X(C7XVD6—6 9 3 ==

Lemma. If V and W are (unitary) representations of G then

XHom, (VW) (9) =Xv(9)xw(g) VgeG

Proof. Given g € G we can choose bases vy, ...,v, of V and wi,...,w,, of W such that
g-v; = \v; and g - wj = pjw; for some Aq, ..., Ay, p1,. .., py € C. Then the functions
a;j(vi) = 6jrw; extend to linear maps o;; € Homy(V, W) that form a basis (with respect
to given basis «;; as represented by a matrix with Os everywhere except a single 1 in the
i,j position).

(9 cvij)(vi) = gleij(g~ vk))
= glaij(A; ' or)
= A, (9(850wi))
= N, pidjrw;

ie. g-aij = A7 g, S0 Xuom, (v (9) = 2055 A7 i = xv (g™ xw (9) = xv (9)xw (9).
O
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Lemma. If U is a representation of G then

. 1
dimU® = al ZXV(Q) = (1lg, xv)a-
geG

Proof. We've seen before that = : U — Uj, 7(u) = ﬁ > gec 9 - u is a projection of U

onto U% and so dimU% = Trm = ﬁ > gec Tr(g) = ‘—('l;' > gec Xu(9)- O

Proposition. If V and W are any representations of G then

dim Hom ¢(V, W) = (xv, xw)a

Proof.

dim Hom ¢(V, W) = dim(Homy,(V, W))¢

= (16 XHomy (V,W))G

- |(1;| S 5w (@) (9)

geG
= (xv,xw)a O

Theorem (Orthogonality of characters). If V and W are irreducible C-representations
of GG, then
1 VW

(xv,xw) = {o V2w

Proof. Use the fact that dim Hom ¢(V, W) = (xv, xw)¢ and Schur’s Lemma. If xy =
xw with V' and W irreducible then (xv,xw)c = (xv,xv)ec > 0 since xy # 0 so
dim Hom ¢(V, W) > 0 and V ~ W by Schur’s Lemma. O

Corollary. If (p,V) is a representation of G then

V ~ @ (xXw, Xp)aW

W irreducible representations of G/ ~

In particular if o is a another representation with x, = x» then o ~ p.
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Proof. By Maschke’s Theorem there are n,, > 0 such that

V ~ @ N W

W irreducible

Moreover, we've seen before that n, = dimHom ¢(W,V) = (xw, x,)c by the previous
Proposition. So the first part follows.

Since
@ <XW7 Xp)GW
W irreducible
depends only on x, (up to isomorphism), the second part follows. ]

Notice this proof depends on Maschke’s Theorem / completely reducible as well as
orthogonality of characters. For example, if we have the two representations of (Z, +)

determined by
10 11

they are not isomorphism but have the same characters. p(n) = o(n) = 2 Vn € Z. Indeed
both have trivial subrepresentations (e;) with trivial quotients. Slogan: “characters
cannot see gluing data”.

Corollary. If p is a C-representation of G with character x then

p is irreducible <= (x,x)¢ = 1.

Proof.
= Is clear from orthogonality of characters.

< p decomposes as p ~ @ n, W with n,, > 0. Then x = > ny,xw but

O6x)e =Y ng

so (X, X)a =1 = x = xu for some W. O

This is a good way to prove irreducibility.

Example. If V is the natural 2-dimensional representation of Dg then (xv, Xv)ps =
1 and so V is irreducible.
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Theorem (The character table is square). The irreducible characters of G form an
orthonormal basis of Cq with respect to (e, e)g.

Proof. We've already seen that the irreducible characters form an orthonormal set so it
remains to prove that they span. Let I = (x1,...,xs) be their C-linear span.

It suffices to show that
* = {gECG: <f7Xi>G:0for’izl,...,s}:O,

For f € Cq and (p,V) a representation of G show

e Zf g) € Hom ¢(V, V)
geG
and use Schur’s Lemma to show if f € I then ¢fv = 0. Finally show 0 = ¢ cGo f

so f=0.
I:<X17"'aX5>

where x1,...,xs are the irreducible characters. For f € Cg and a representation (p, V)
we can define

brv =9 =15 Zf g) € Hom¢(V,V)
[l =
If h € G then
p(h)™! Z F(g)p(h™" gh)

gEG

G Z f(hgh=t since g — hgh~! is a bijection

e =

|G‘Zf since f € Cg
geG

=

So pp(h) = p(h)p Vh € G and ¢ € Hom ¢(V,V). If in particular, (p, V) is irreducible,
then 3\ € C such that pry = Aide since C is algebraically closed. Then (f, x,)a¢ =
Trpsy = AdimV. So if f € I+ then A = 0 and ¢y = 0. But in general if (p,V) is
any representation, then V' ~ @V, for some irreducible representations V; (Maschke’s
Theorem) and p = @ p; and pryv = @ ¢ry,. So again if f € I, then ppy = 0. In
particular if V"= C@ is the regular representation then

0= prcade = Z (g |

gGG

So f=0and I+ =0. O
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Corollary. The number of irreducible C-representations of G is the number of
conjugacy classes in G.

Notation. For g € G we’ll write [g]g = {zgz~! | x € G} for the conjugacy class
containing g.

‘ Corollary. For g € G, x(g9) € R for every irreducible character x if and only if
lgle = lg7 -

Proof. Since x(g7') = x(9), x(9) € R < x(9) = x(¢7'). So we can rephrase the
statement as

x(g) = x(g~ 1) for every character x <= [glg = [¢ ']g
Since the (irreducible) character span Cg,
x(g) = x(g71) for every (irreducible) character < f(g) = f(g ) for every f € Cq

Since 1y, is a class function f(g) = f(g~") for every f € Cq <= [gla =[9""a. O

4.3 Character Tables

Definition (Character table). The character table of a finite group is defined as
follows. We list the conjugacy classes of G, [gi]a,---,[9r]c (by convention g1 = e
always). We list the irreducible character of G (over C) xi,..., X, (by convention
X1 = L the character of trivial representation). Then we write the matrix

€ 1 92 | 93 | - 9j ol 9
x1 | 1 1 1 |--. 1 1
Xl e .. e e X’L(g])

Xi

We sometimes write |[g;]¢| above g; and sometimes |Cq(g;)| (recall |[gi]c||Ca(g:i)| =
|G| by Orbit-Stabiliser Theorem).
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Examples

(1) C3=(z). Let w=€?"/3. Sow? =w ' =0@.

e |a?
x1|]1]1]1
x2|l|lw| w
xs | 1l|lw| w

Note the rows are indeed orthogonal with respect to (e, e)s and the columns are
orthogonal with respect to standard Hermitian inner product.

(2) S3. Conjugacy classes are {e}, {(12),(13),(23)}, {(123),(132)}. So there must be
3 irreducible representations / character. x; = L is the character of the trivial
representation. y2 = € : S3 — {£1} C C* (where ¢ is the sign of a permutation)
is a homomorphism and so a 1-dimensional representation and so a character. To
compute y3 we can use orthogonality of characters. Let xs(e) = a, x3((12)) = b,
x3((123)) = c. Since every g in S is conjugate to g~ ! in S3, a,b,c € R. Then

1
0=(1,x3)¢ = 6(a+3b—|—20)

1
0= (e, 1)qg = 6(@—31)—{—26)

which can be solved to give b = 0, a = —2¢. Then

1
1=(x3,x3)q = 6(a2 + 3b% + 2¢%)

So ¢ = 1. But a is the dimension of the representation with character x3 so a > 1.
Soa=2,¢c=-1.

Cs(g)l |6 2 3
g |e (12) (123)
1 1 1 1
€ 1 -1
X3 2 0 -1

In fact we already know about x3 as the character of the representation of S3 (=2 Dg)
on R? induced from the symmetries of a triangle. Once again the columns are
orthogonal and their lengths are 12 + 12 +22 = 6 = |Cg,(e)], 12+ (—=1)2 + 02 =2 =
|Cs,((12))], 17 + 12 + (=1)% = 3 = |Cs,((123))].
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Proposition (Column orthogonality). If G is a finite group and xi, .., X, iS a
complete list of its irreducible characters then for g, h € G,

—— 0 if (gl # [Mle
i i(h) =
L It {\cc<g)| if [gle = [He

In particular
( r
Zdim Vi)? = ZXi(e)Q = |G|
i=1 i=1

where V; is a representation such that xv, = x;.

Proof. Let X be the character table viewed as a matrix X;; = x;(g;) and D be the
diagonal (real) matrix with D;; = |Cq(gi)|. Orthogonality of characters gives

62']' = <Xian>G

So XD~ X T since X is square, X is invertible and D-1XT = X! so D = XTX since
D isreal, i.e. > xk(9:)xk(9;) = Dij = 6ij|Cc(gi)l- O

4.4 Permutation Representations

If recall that if a group G acts on a finite set X, CX = {f : X — C} is a representation
via

(9- @)= flg~")
or equivalently g - 0, = d,x Vg € G,z € X.

Lemma. If x is the character of CX then x(g) = [{z € X | gz = z}|.

Proof. It X = {x1,...,x4} then with respect to the basis d,,,. .., 05, the matrix of g has
i-th column with a 1 in entry j and 0 elsewhere if g-2z; = x;. So i-th column contributes
1 to the trace if ¢ = j and 0 otherwise. O
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Theorem. If V;,...,V, is a complete list of irreducible representations of a finite
group GG/C, then the regular representation CG decomposes as

T

P (dim V;)v;.

=1

In particular, |G| = >, (dim V;)2.

Proof. We just need to show
dim Hom ¢(CG, V;) = dim V; Vi
But

dim Hom ¢(CG, V;) = (xca, Xvi)G

1
=G > {h e G| gh=h}xv(g)
geG

1
= @\GIXw(e)
= xv;(e)

as required. O

Proposition (Burnside’s Lemma). Let G be a finite group and X a finite set with
G-action. Then
(1, xcx)g = #orbits of G on X.

Proof.

G, xex)e = D xex(9)
geG

=S e e X | gz =}

geG
=H(g,2) € G x X | gx = z}|

=Y HgeG|gz=a}

zeX
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So

- Y |5

orbits O; \z€0;
= Forbits
]

Note that if X = [J O; is the orbit decomposition then we’ve seen before CX = € CO;, so
Burnside’s Lemma says each CO; contains precisely one copy of the trivial representation
C — the constant functions on O;. This is not so hard to prove directly (exercise).

If X,Y are two sets with G-actions then X x Y is a set with G-action via g - (z,y) =
(9-x,9-y) for (v,y) € X xY,g€G.

Lemma. If XY are finite, then xcxxy = xcx - Xcy-

Proof. If g € G,
xexxy(9) = {(z,y) € X xY | (g2,9y) = (z,y)}]
={zeX|gr=x} HyeY|gy=y}
= xcx (9)xey (9) O

Corollary. If G is a finite group and X,Y are finite sets with G-actions, then

(xcx, xcy)a = #G-orbits in X x Y

Proof.

1
(Xcx, xev)a = al > xex(9)xer (9)
geG

1
= @ Z Ixcxxy
geG

= (1, xcxxy)G
= #G-orbits on X x Y Burnside’s Lemma
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Remark. If X is any set with G-action and at least 2-elements then {(z,z) | x €
X} C X x X is G-stable and non-empty and its complement {(z,y) | z,y € X,z #}
is also non-empty and G-stable.

Definition (2-transitive action).  We say G acts 2-transitively on X if for all
1, T2, Y1,Yy2 With T1 # y1, xo # Yo, there exists g € G such that gry = z9 and
gy1 = y2 (ie. g (x1,91) = (22,y2)). Equivalently if the G-action on X x X has
precisely two orbits.

Example. S, acts 2-transitively on {1,...,n} for all n > 2. If g acts 2-transitively
on X x X then by the last corollary,

{(xcx,Xxcx)e = 2
So if xcx = @)_; n:iVi, V; irreducible and pairwise non-isomorphic then Y n? = 2.

That is, CX has two non-isomorphic irreducible summands, namely the constant
functions and

V={feCX|)_ flz)=0}

rzeX

Then yy is an irreducible character so

xv(9) = xcx(9) — Lg(g) = (# fixed points of g on X) — 1

Moreover, if V is irreducible then the action must be 2-transitive.

Exercise: If G = GLy(IF,) then decompose the permutation representation of G coming
from action of G on F), U {oco} by M&bius maps:

a b Z_az—i—b
c d)”7  cz+d

if z € Fp\ {—d/c} etc.

Examples

(1) G = S4. The character table of Sy is
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lgila| | 1 3 8 6 6
g | e | (12)(34) | (123) | (12) | (1234)
1 |1 1 1 1 1
> 1 1 1 1 1
xs 3] -1 0 1 -1
xa 3] -1 0 | —1 1
s |2 2 -1 1 0

Proof. 1, are constructed as for S3. By our discussion above, xcf1,23.4y = 1+xv
for some irreducible representation V' of degree 3 and we can let xs = xy such
that x3(g) = #fixed points of g — 1. We saw on Example Sheet 1, Question 2 that
if 8 is a 1-dimensional representation and p is any irreducible representation then
(p®0)(g) := 0(g)p(g) is an irreducible representation of G and x,x6(9) = Xx,(9)0(9)-
Thus we can set x4 = > -x3. We can compute x5 via column orthogonality

12412432432+ xs(e)? =24
s0 xs(e) =2, and 327, xi(e)xi(e) = 0 Vg € Sy \ {e}. O
(In fact there is a homomorphism S; — S3 giving a 2-transitive action of S4 on
{17 273} and X5 = XC{1,2,3} — ]l)

G = A4. Every irreducible representation of S; may be restricted to A4 and its
character values won’t change. In this way we get 3 characters of Ay

1=1s]as %2=x3la, =x3las V3= X5a,
It is irreducible since it has dimension 1:
(2, 2) 0, = 7513+ 3(-1)* +5-0%) = 1
so 1 is irreducible. However,
(Y3,93) 4, = 1—12(122 +3(2)2+8(-1)3) =2
so 13 decomposes into two 1-dimensional non-isomorphic pieces.

Exercise: Use this to construct the character table of A4. Recall [(123)]g, is a
union of two classes in Aj.
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5 The Character Ring

We’ve already seen that the algebraic structure on Cq for a finite group G has represen-
tation theoretic meaning, e.g. if V;, V5 are representations then

XieVe = XVi + XV
Xo=0
Xt = la
(xv1» XW»)@ = dim Hom ¢(V1, Va)

We'’ve also seen xcxxy = Xcx - xcy and if 8, p are representations such that 6 is 1-
dimensional then xsg, = X6 - Xp(= 0x,). We want to generalise this to any pair of
representations so Xoqp = Xo * Xp-

xo = 0 chere 0 is the k-vector space of dimension 0, so GL(0) = {ido}. xx = Lg where
k is the trivial representation.

Goal: If V, W are representations, build a representation V ® W such that yygw =
XV " XW-

5.1 Tensor Products

Suppose V and W are vector spaces over k with bases v1, ..., v, and wy, ..., w, respec-
tively. We can view V @& W as the set of pairs (v, w) with v € V, w € W under pointwise
operation or as the vector space with basis v, ..., Vm, w1, ..., Wwy,.

Definition. The tensor product VQ W of V and W is the k vector space with basis
w; @w; for 1 <i<mand1<j<n (sodimV®W = (dimV)(dim W)).
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Example. If X and Y are finite then kX ® kY has basis §, ® 6, forz € X,y €Y
and axxy : kX @ kY — kX XY, §; ® &y > O, extends to an isomorphism of
vector spaces.

Notation. If v = )" \v; € V and w =) pjw; € W then

v®w::ZAipjvi®wj€V®W

1,J

So under axyy,
axxy(f ®g)(z,y) = f(z)g(y)

Note that in general, not every element of V ® W can be written in the form V@ W.
For example, v1 ® w1 + v9 ® we. The smallest number of summands needed is called
the rank of the tensor.

Lemma. The map Vx W = V@ W, (v,w) — v ® w is bilinear.

Proof. We should prove that if z, 21,20 € V and y,y1,y2 € W and uq,us € k then

(U121 + ue2) @ y = u1 (71 @ Y) + ua (w2 @ y)
T ® (u1yr + uay2) = w1 (z @ y1) + ua(z @ y2)

We'll do the second and then appeal to symmetry. We write z = > \jv;, yp = > ,u?wj
for k =1,2. Then

@ (wyr +uaye) = > Ni(urpg + ugpd ) (v; @ wy)
J J

i?j
ul(l‘ & yl) + u2($ & yz) = Z’lﬂ)\iﬂ} (’UZ' (%9 wj) + ZU2>\[/,L?('UZ' ® wj)
i,j 4,3
These are equal. ]

Exercise: Show that given U, V and W there is a one to one correspondence
{linear maps V@ W — U} — {bilinear maps V. x W — U}

given by precomposition with the bilinear map (v, w) — v ® w.

Lemma. If z4,...,z,, is any basis for V and y1,...,¥y, is any basis for W then
z; ®@y; with 1 <i<mand 1< j <nisa basis for V® W. Thus the definition of
V ® W does not depend on the choice of basis.
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Proof. 1t suffices to show that the given set spans V' ® W since it has size mn. But if
v; =, Apz, and wy = Y Vijys then

Vi Qwj = Z(Am'BSj)(xr ® Ys)

8

But {’Ul' (%9 wj}lginggjgn span V ® V ® W so we’re done. O

( N
Remark (for enthusiast’s). In fact we could’ve defined V®W in a basis independent
way. Let F be the (infinite dimensional) vector space basis (v @ w |v € V,w € W)
and R the subspace spanned by elements

T ® (ur1y1 + uy2) — ur(z @ y1) — u2(x @ y2)
(u1v1 + UQ’UQ) KXY — ul(xl ® y) - u2($2 ® y)

for all z,z1,29 € V, y,y1,y2 € W, u1,ug € k. Then let V@ W = F/R.

. J

Exercise: Show that for vector spaces U, V and W there is a natural (basis independent)

isomorphism
V)W = (UW)d (VeW).

Definition. Suppose V and W are vector spaces with bases vy, ..., v, and wy, ..., wy,
and ¢ : V — V and ¢ : W — W are linear maps. We can define

PRV VOW - VOW(p®) (v ® wj) = p(v; @ P(w;)

Example. If ¢ is represented by A and 1 is represented by B with respect to given
bases, then if we order V; ® W; lexicographically (i.e. v1 ® wi, v1 ® wa, vi ® w3, ...,
V] ® Wy, V2 @ W1, w, Uy @ Wy), then (¢ ® 9) is representede by the block matrix

AnB AnB
An B AxpB

Amm B

Since

(¢ ® ¥)(vi ® wy) (Z Akz”k) ® (Z Bljwl> = ApBijvg @ wy
.

k.l
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Lemma. The linear map ¢ ® ¢ does not depend on the basis. Indeed,

(@Y (vRw) =) @Y(w)  YveV,weW.

Proof. Writing v = ) A\jv; and w = ) pjwj,

(pP)(vew)=(pe1) Z Aiftjvi @ wy
= Z it o(vi) @ Y(w;)

= ¢(v) © P(w)

O]

p
Remark. The proof really says that V. x W — V@ W, (v,w) — v ® w is bilinear

and ¢ ®1 is the corresponding linear map V@W — V@ W from an earlier exercise.
N\

~

J

Lemma. Suppose @, 1,2 € Homg(V, V) and ¢, ¢1, p2 € Homy (W, W). Then
(1) (p1p2) ® (YP192) = (1 @ ¥1)(p2 @ P2) € Homy(V @ W,V @ W).
(i) idy ® idw = idyew

(iii) Tr(e ® ) = Tr(y) Tr(y).

Proof.

(i) Given v € V, w € W by the last lemma we can compute

(P12 @ P192)(V @ W) = P1p2(V) @ P1Pa(w)
= (1 @ Y1) (p2(v) ® Pa(w))
= (1 ® Y1) (p2 @ P2)(v @ w)

We’re done since all maps and linear and {v ® w} spans V @ W.

(ii) Is clear.
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(iii) By earlier example it suffices to see

A11B
Tr . = BjAj; = (Tr A)(Tr B) O
. -

AnnB

Definition. Given two representations (p, V') and o, W) of a group G we can define
a representation (p ® o,V @ W) via

(p®0a)(g) =plg) ®a(g)

This is a representation by parts (i) and (ii) of the last lemma, and X, 00 = X, - Xo by
part (iii).

s N
Remark.

(1) Tensor product of representations defined last time is a generalisation of the

tensor product of a representation and a 1-dimensional representation previously
defined.

(2) If X and Y are finite sets with G-action

axxy kX QkKY - kX xY
0z ® 0y = d(ayy)

is an intertwining map.

~

Definition (Character ring). The character ring R(G) of a group G is defined by

R(G) :={x1 — x2 | x1, xeare characters of G} C Cqg

J

Since xv,ev, = XV, + Xvi, R(G) is a subgroup of Cg under +. Since 1¢ is a character,
R(G) contains the multiplicative 1 in Cq.

Since XVi@Va = XVi " XVas

(XV1 - XVQ) ) (XW1 - XWQ) = X(VioW)@(Va®@Wa) — X(Va@Wi)s(VigWs) € R(G)

R(G) is closed under - and so R(G) is a subring of Cg.
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Observation: If (p, V) is a representation of G and (o, W) is a representation of another
group H, then

pR0o:Gx H—GLV W)
(9,h) = plg) @ a(h)
is a representation of G x H, by parts (i) and (ii) in the last lemma last time. Moreover,
(xv @ xw)(g,h) = xvew (g, h) = xv(g9)xw(h)
by part (iii) of the same lemma. Thus
R(G) x R(H) — R(G x H)
(Xv, Xw) = xv ® Xw

defines a Z-bilinear map.

The construction of V ® W as a representation of G from last time can be viewed as the
case G = H in the construction followed by restriction along

G—-Gxd
g+ (9,9)

Proposition. Suppose G and H are finite groups, and (p1, V1), ..., (pr, V;) are the
irreducible C-representations of G and (o1, Wh),. .., (05, Ws) are all the irreducible
C-representations of H.

Foreach1 <i<r, 1<j<s, (p® o, Vi ® Wj) is a irreducible C-representation of
G x H. Moreover, all irreducible C-representations of G x h arise in this way.

We’ve seen this when GG, H are abelian before since all these representations have degree
1 in this case.

Proof. Let x1,...,xr be the characters of p1,...,pr, and ¥1,...,%s the characters of
01,...,0s. The character of p; ® 0 is (x; ® ¥;)(g,h) = xi(9)¢;(h). Then

O ® By e ® W)axr = o S @B W Xk(@)(h)

‘G x H’ (9,h)eGxH
1 — 1 -
= mg%xi(gmw) <|H| ]EZij(ng(g))

= (Xi» Xk) G (V). Y1) 1

= 0;101
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So the x; ® v; are pairwise distinct and irreducible. Now
> (dimV; @ W;)? = <Z() dimm)2> > (@dmW;)? | =|G|H| = |G x H| O
i,j i j
Question: If V,W are irreducible representations of GG, can V ® W be an irreducible
representation of G7 We’ve seen that if dimV = 1 or dim W = 1 then yes. Typically

the answer is no.

Example. G = 53

| 1] (123) | (12)
1] 1 1
e 1] 1 —1
Vi2| -1 0

clear that 1 @ W ~ W always. e®Re =2 1,e®V = V. Also, V ® V has character
Xv- 2 2 2 2 2 2

xv(e) =2"=4, xy((123)) = (-1)" =1, xv((12))=0"=0
Xy =xv—+e+1.

In general if 1, ..., x, are all irreducible characters of G and 1 < 4,5 < r then
T
XiXi = 3 af X
k=1

for some a; jx € No. These numbers aﬁ ; determine the ring structure on R(G) since
R(G) = @;_, Zx; as a group under +.

In fact, VeV, V®V ®YV,...are never irreducible if dimV > 1.

5.2 Symmetric and exterior powers

For any vector space V' we can define
oy i =0:VV-aVeV clv@w)=wevVYo,weV

(Exercise: prove that V xV -V @V, (v,w) — w ® v is bilinear).

49



Notice 0% = idy gy, so if char k # 2, then o decomposes V ® V into eigenspaces.

a} the symmetric square of V
the exterior / alternating square of V

SV i={acVaV]|o(a)

AV :={acVeV|o(a)=a}
In fact V@V = S2V @ A2V is the isotypical decomposition of V ® V as a representation
of Cs. Suppose for now that char k # 2.

Lemma. Suppose v1,..., v, is a basis for V.

(i) S?V has basis vvj := 3(v; ® vj +v; ®v;) for 1 < i < j < m (vjy; = vy if
i > j allowed).

(i) A%V has basis v; Av; := 5(v;®v; —v; ®;) for 1 < i < j < m (vjAv; = —v; Av;
if i > j allowed)

Thus dim S?V = im(m + 1) and dim A%V = Im(m — 1).

Proof. 1t is easy to check:
(i) viv; € SV for all 4, 5.

(ii) v; Avj € A%V for all 4, j.
(iii) The union of the claimed bases spans V ® V and has size m? = dimV @ V

So it follows from this that V ® V = S2V @ A?V. Everything else follows.

You might want to ponder Example Sheet 2, Question 11 in this context.

Proposition. Let (p, V') be a representation of G.
(i) VeV = S2V @ A%V as a direct sum of representations of G.

(ii) For g € G such that p(g) is diagonalisable (for convenience, but there exists a
slightly more complicated proof not using this condition),

xsev(9) = £ (v (9)? + v (%)
xazv = 300 (0)? ~ xv(e)

Proof. For (i) we need that S?V and A%V are G-invariant, i.e. if a € V ® V such that
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o(a) = Aa for A = £1, then o(ga) = Aga Vg € G. For this it suffices to show that p(g)
and o commute Vg € G, i.e. 0 € Homg(VeV,V®V). BUt cog(v@w) = o(gv®gw)) =
gw ® gv = glw @v) = go(v @w) Yg € G.

To prove (ii) it suffices to compute y g2y since sum of RHS = x3, = yvgv. Let v,..., 0
form a basis for V such that p(g)v; = \jv; for 1 < i < m.

g(vi)\i) = )\i)\jvﬂjj

So
Xs2v(9) = Z Aidj

1<i<j<m

and

2
xv(9)® +xv(g?) = (Z Ai) FY )P =2 A +2) NN =2xev(g) O
i j i<j
Exercise: Prove the formula for x 2y directly.

Start of

lecture 13 Recall

xsev(9) = 5 (v (9)” + xu(6)
xaev(9) = 2 (v (9) — v ()
Sy |e | (12)(34) | (123) | (12) | (1234)
1 |1 1 1 1 1
e |1 1 1 | -1 ] -1
xs |3] -1 0 1 -1
€X3 3 -1 0 -1 1
X5 |2 2 -1 1 0 0
3 |9 1 0 1 1
xs(9%) | 3 3 0 3 -1
S%ys | 6 2 0 2 0
A%x3 |3 -1 0 -1 1

since e = e = ((12)(34))% = (12)2, (123)? = (132), (1234) = (13)(24).

Thus S?x3 = 1+ x3+ x5, A2x3 = €x3. So given 1, ¢, x3, we can construct the remaining
characters from S?x3 and A%y3. More generally, for any vector sapce V we may consider

V=V @@V =VeVorl
N——

n times
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forn >1 (V¥ =k, VO = V). Then for any w € S,, we can define an (invertible)
linear map

o(w) : Ve — yen

v1®~~-®vnr—)vw_1(1)®~--®vw_1(n)
for v1,...,v, € V.

Exercise: Show that this defines a representation of S, on V®" and that if V is a
representation of G then the G-action and S,-action on V®" commute.

Thus we can decompose V& as a representation of S, into isotypic components if
char k = 0 and each will be a G-invariant subspace of V&7,

Definition. If V is a vector space
(i) The n-th symmetric power of V is

SV :={a c V®" | o(w)(a) = a Vw € S, }

(ii) The n-th alternating / exterior power of V is

ANV :={a eV |o(w)(a) =c(w)a Yw € S,}

Note that for n > 3,
SWaAYV ={aec V" |o(w)a=aVwe A,} TV

We also define the following notation for vy,...,v, € V

1
UIUQ"'Un:E Z Uw(l)@"'@”w(n)

" weSy
vl/\-‘-/\vn:% Z E(W) V(1) B +++ @ Vyy(n)
wESy
(for chark = 0).
Exercise: Show that if v1,...,vy is a basis for V' then

is a basis for S™V, and

Uiy Ao Aoy, [ 1< <dp < -0 <y < d)
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is a basis for A"V. Hence given a basis for V' with respect to which p(g) is diagonal,
compute xgny(g) and xany(g) in terms of the eigenvlaues of p(g).

For any vector space V, A™VV ~ k and A"V =0 for n > dim V.

Exercise: Show that if (p,V) is a representation of G then AM™VV ~ detp as a
representation of G.

Definition. Given a vector space V' we can define the tensor algebra of V/

TV = PHver

n>0

as an infinite dimensional vector space. Then T'V is a (non-commutative) graded
ring with product

(M® Qu) (W Quwy) =11 Q- QU Quw ® -+ Qws € VEIrTs)

For vi®---v, € VO w1 ®---@uw, € V" with graded quotient map. The symmetric

algebra of V
TV

SV =
{ry—yzx|z,yeV}

and exterior algebra of V'

TV

AV =
{zy+y®z|z,yeV}

J

One can show SV ~ @P,,5(S"V and AV ~ P, ., A"V in characteristic 0. This can be
seen via

SV is a commutative graded ring and AV is a graded commutative (z € A"V and
y € A°V then z Ay = (—1)"y A z) ring.

5.3 Duality

Recall that Cg has a x-operation given by f*(g) = f(¢~ ') for all f € Cg, g € G. This
also restricts to R(G). Recall also if (p, V') is a representation of G then the dual rep
(p*,V*) is defined by

Pr(9)(0)(v) =0(p(g™")(v) VweV,geG oV

Lemma 2. xy+ = X7 .
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Proof. If p(G) is represented by A with respect to a bais v1,...,vg for V and e1,...,¢q4
is the dual basis for V*, then p(g~!)v; = Zj(A_l)jwj So

p*(9)(er) (0) = exlp™ (g)vi) = e | D _(A)jivj | = (A i
J
and
pH(9)(er) =D (A e,
J
i.e. p*(g) is represented by (A~!)" with respect to this dual basis. Taking traces gives
Xo=(9) = Xo(97") = X5 (9)- =

We say V is self-dual if V' ~ V* as representations of G. When G is finite and k = C
then V is self-dual if and only if x}, = xv which happens if and only if xv(¢9) e RVg € G
since x7, = Xv in this case.

Example.

(1) G=(z) ~C3and V =C, p: G — CX, 2/ s ¢2™/3, Then p*(zf) = e~ 2m4/3
and V is not self-dual.

(2) G =S, since [g]s, = [¢7 s, Vg € Sy, every representation of S,, is self-dual.

(3) Permutation representations are always self-dual.

We now have various ways of building representations of a group G.

e permutation representations.

e restrict representations of H to G along homomorphisms 0 : G — H.

e tensor products.

e S™V and A™V.

e decomposition of representations into irreducible components.

o character theoretically, e.g. row / column orthogonality in character table.
One more next time related to restriction from G to H for H < GG called induction.

Start of
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6 Induction

6.1 Construction

Suppose H is a subgroup of a (finite) group G. Then the restriction from G to H gives
a way of building representations of H from representations of G. We want to go the
other way and build representations of G' from representations of H.

Recall that [g]¢ denotes the conjugacy class of ¢ in G. So

1 if x is conjugate to g in G
L) (z) =

0 otherwise

We note that for g € G,

g e =19l ={v " |y € ldla}

since (zgz~1)~! = zg~lz7!. So 1. = If H < G then [g]g N H is (possibly

empty) union of H-conjugacy classes

1

9 1a"

gl N H = U [h]u
[PlzCldlc

Sor:Cq — Cu; r(f) = f|u is a well-defined linear map with r(Lig.) = > 1, clole Linla-
Since for every finite group G

i, F2)a = ,(1}| S £ (9)f2(9)

geG

defines a non-degenerate bilinear form on Cg, the map r has an adjoint r* : Co — Cg
given by
(r(f1)s form = (f1,7"(f2))c

for f1 € Cq, fo € Cy. In particular for f € Cyy,

> (@) =

z€[gla

_ 1
|Gl
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so combining these we see that

* 1Ca(9)|
r*(f)(g) Z F(h) 0
[h]Hgg]G| m(h)|
Since zgz~! = ygy~! <= a7y € Cu(y),
y Ca(9)]
P = S A%l
he%;uq |CH(h)H[h]H|
N e
B |H| ;JC (7 gz)
where
fho)r = {g(g) itiei{wise

Question: Isr*(R(H)) C R(G)? Suppose x is a C-character of H and v is an irreducible
C-character of G. Then

(r*(x); v)e = (x,7(¥))m € No
by Orthogonality of characters since r(1)) is a character of H.

So writing Irr(G) = {irreducible C-character of G},

)= Y 6Yla) ey (2)

Yelr(Q)

is even a character of G.
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Example. G = S5 and H = A3 = {e,(123), (132)}. If f € Cy then by (1),

* o |Css(€)’ _9 o)) = .
) = (g€ = 356 = 2/
r(£)((12)) = 0
o _ 1C0s,((123))] |Cs5((123))]
(1(0128)) = 22 gy (1280 + {2 (s F((152)
= S7((123)) + 2£((132) = £((128)) + £(132)
Thus
As | 1] (123) | (132) Sy | 1](@2) | (123)
x1 |1 1 1 ™(x1) [ 2] O 2
x2 | 1| w w? ™(x2) | 2| O -1
xs | 1] w? w r™(x3) | 2| O il

(where w = €2™/3 and we use the fact that w +w™' = 1).

Thus 7*(x1) = 1 + ¢ and r*(x2) = 7*(x3) = xv where V is the 2-dimensional
irreducible representation of S3 consisted with formula (2) since (1) = r(e) = x1

and r(xv) = x2 + X3

Note that x is an irreducible character of G, r*(x) can be an irreducible character of G
G

but need not be in general. Also note that r*(x)(e) = %X(e).

We'd like to build a representation of G with character 7*(x) given a representation W
of H with character x.

Suppose that X is a finite set and W is a k-vector space we may define
FX,W)={f: X =W}

the k-vector space of functions X to W.

So F(X,k) = kX. Then dim F(X, W) = | X|dim W since if wy,...,w, is a basis for W

then
(bpw; |z € X,1<i<d)

is a basis for F(X, W).
If K is a group and X has a K-action and W is a representation of k then F(X, W) is a
representation of K via (k- f)(z) = k- (f(k~'x)) forall f € F(X,W),k € K,z € X. For

example if W = k is the trivial representation, then F (X, W) = kX as representations
of K.
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Now suppose H < @ are finite groups then G can be viewed as a set with G x H-action
via (g-h) -z =gzh™', V¥(g,h) € G x Hyxz € X.

If W is a representation of G then we can view W sa a representation of G x H via
(g,h) - w=h-w
Now F(G,W) is a representation of G x H via
((9,h) - f)@) =hf(g'zh)  V(g,h) EGx H, f € F(G,W),zeCG

So it can be viewed as a representation of G and as a representation of H via g — (g, eq)
and h — (eqg, h) respectively and the actions commute.

Now
FGE W) ={feF(G,W)|(eh)f=fVheH}
={fe F(G,W)| f(zh) = h~ 1 f(z) Vh € H,z € G}
is a G-invariant subspace of F(G, W) since if (e, h) - f = f then for g € G,

(e,h)(g,e)f - (97 6)(6, h)f - (ga €)f

Example. F(G, k)" ~ kG/H if k is the trivial representation of G.

N
Definition (Induced representation). Suppose H is a subgroup of a finite group G
and W is a representation of H. The induced representation

Ind GW = F(G, W)

is a representation of G.

Lemma. dimInd %W = % dim W.

Proof. Let X = G/H be the left cosets of H in G and let T1,...,%|q/H| be coset
representatives. Then

0: F(GW)H - F(X,W)
0(f)(ziH) = f(x:)

is a k-linear map with inverse ¢(I)(z;h) = h~t(x;) for all | € F(X,W),h € H, i =
1,...,|G/H|. O
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Theorem (Frobenius reciprocity). If V' is a representation of G and W is represen-
tation of G then
Hom ¢ (V,Ind $W) ~ Hom g (Res GV, W)

where Res gV is the restriction of V to H.

Corollary. If k = C then

<XV? XInd%W)G = <XV’H7 XW>G

In particular, xq,q Gy = ™ (xw)-

Proof of Frobenius reciprocity. We’ll prove Hom ¢(V, F(G,W)) ~ Homy(V, W) as rep-
resentations of H and then deduce the result by taking H-invariants. Here the action of
H on the left hand side is given by

(h-0)(v) =h-60(v) 0 € Homq(V,F(G,W)),ve V,he H
so Hom (V, F(G,W)) = Hom ¢(V, F(G, W)H) = Hom ¢(V,Ind §W). Note that this
means
(h-0)(v)(x) = h(0(v)(zh))
h(O(h™ e~ ) (w))
Vx € G since 0 is G-invariant. We can define a linear map
Y : Hom ¢ (V, F(G,W)) — Homy(V, W)
P(0)(v) = B(v)(e) (%)

We claim ) is an H-intertwining map. First we prove for h € H, § € Hom ¢(V, F(G,W)),
velV.

h- (¥(0)(v) = h(y(0)(h™'v))
= h(6(h~"v)(e))
= (h-0)(v)(e) by (x) for z =e¢
= ¢((h-0))(v)

and v is H-equivariant.

Given ¢ € Homy(V, W) we can define
pa € Homk(V7 f(Gu W))
0a(v)(z) = oz ) Ve e GveV
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Then for all g,z € G,v eV,

va(gv)(@) = p(z 7 gv) = pa(v)(g'2) = (9 pa(v))(z)

ie. 9o € Homqg(V,F(G,W)). We can compute ¢¥(pg)(v) = pa(v)(e) = o(v), ¢ €
Homy(V,W),v € V and

Y(0)c(v)(x) = »(0)(x™v) = 0z~ "v)(e) = 27 0(v)(e) = 0(v)(2)
for # € Hom ¢(V, F(G,W)),z € G,v € V. Thus ¢ — ¢ is an inverse to 1. O

Remark. We could instead have computed XInd GV directly and shown that it is
equal to 7*(xw ) and then deduced Frobenius reciprocity from this when k£ = C.

6.2 Mackey Theory

This is the study of representations like Res%’; Ind gW for H, k subgroups of G and W a
representation of H. We can (and will) use it to characterise when Ind gW is irreducible
as a representation of G (when k = C). If H, K are subgroups of G then H x K acts on
G via

(h,k)-g=kgh™?

An orbit of this action is called a double coset. We write
KgH = {kgh | ke K,h € H}

for the orbit containing g.

Definition. K\G/H = {KgH | g € G} is the set of double cosets. W

For any representation (p, W) of H and g € G we can define a representation (9p,9W)
bw

p? 9H — GL(W)
ghg™" + p(h)
where 9H := gHg™ ' < G.

Theorem (Mackey’s restriction formula). If G is a finite group with subgroups H
and K and W is a representation of H then

Res & Ind W ~ @ Ind &,y Res B 9W
KgHeK\H/H
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Proof. Note that
Ind GW = F(G,W)H

H
=F I EEHW
KgHeK\G/H
~ P FEgHW)"
KgHeK\G/H
as representations of K.
So it suffices to show
F(KgH,W)H ~ F(K W)k H

as representations of K. We’'ll defer this to next time. O

Corollary (Character version of Mackey restriction). If x is a character or a rep-
resentation of a H then

mdG)lx = >, Indfrg@xlonnx)
KgHEK\G/H

Exercise: Prove this corollary directly using characters.

Corollary (Mackey’s irreducibility criterion). If H < G and W is a C-representation
of H then Ind EW is irreducible if and only if

(i) W is irreducible as a representation of H

(ii) For each g € G\ H, the two representations Resigm W and Res an gW of
H N9H have no irreducible subrepresentations in common.

Proof.

Xmd ¢ w» Xmd gw)@ = (XW» XRes & md Gw )G (Frobenius reciprocity)

= Mackey’s restriction formula
Z <XW’XInd§mgHReSmeH9W>H ( y )
HgHeH\G/H

= Z (Res ynmxw, Res ot xow)  (Frobenius reciprocity)
HgHeH\G/H

So Ind %W is irreducible if and only if RHS is 1. The term for the double coset He H
is (xw,xw)g > 1 and all the other terms are > 0 so irreducibility is equivalent to
{(xw,xw)g = 1 and all otehr temrs are 0.
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{(xw,xw)m = 1 if and only if condition (1).

(Res L, xw, Res g xaw) = 0 if and only if (ii) for g. O

Note for condition (ii) we only need to check for a family of double cosets excluding
HeH =H.

Corollary. If H < G and W is an irreducible representation of H then
Ind W is irreducible <= 9xw # xw Vge G\ H

Oxw(ghg™") = xw(h)).

Proof. Since H < G, 9H = H for all g € G and 9W is irreducible since W is. So by
Mackey’s irreducibility criterion,

Ind §W is irreducible <= W % IW Vge G\ H
— xw#xe V9EG\H O

Example.

(1) H = (r) ~ C), the subgroup of rotations in G = Da,,. The irreducible characters
of H are all of the form

Xk(rj) _ eQm‘jk/n
We see that Ind gx x 1is irreducible if and only if
Xk (rj) # x(r — j) for some j <= xx is not real valued
(2) G =S, H=A, If ge S, isa cycle type that splits in A, and x is an
irreducible character of A, taking different values on the two classes, then

Ind ifl X

is irreducible.

Recall that for g € G,

F(KgH W), ={f: KgH — W | f(zh) = h™'f(z) Vo € KgH,h € H}
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is a representation of K via
(kf)(x) = f(k™'2) Vo€ KgHckecK.

Last time we reduced the proof of Mackey’s restriction formula to the following lemma:

Lemma. There is an isomorphism of representations of K

F(KgH, W) 5 F(K, 9W)KN7H,

Proof. Let © : F(KgH, W) — F(K,9W), O(f)(k) = f(kg). If k' € K,
(K- ©(N)) (k) = O(f)(K'k) = f(K~'g) = (K - f)(kg) = O f)(k)
i.e. © is k-linear. If ghg~' € K for some h € H, then

O(f)(kghg™") = f(kgh)
= p(h) ™" f(kg)
= (“p)(ghg™ HO(f)(k)

ie. ImO < F(K,9W)E™WH We try to define an inverse to © via
Y F(K,IW)EYH o F(KgH, W)H
D(f)(kgh) = p(h™") f (k)
If k1ghy = kaghs then ky'ky = g(hohi')g™' € K N9H.
flka) = flhr(ky k1))

= (%p)(ghahi g ™") f (k1)
p(hahi ™) f (k)

So p(ha) ™ f(k2) = p(hi 1) f(k1) i.e. (f) is well-defined. Moreover if f € F(KgH, W)H,
then
VO(f)(kgh) = p(h)~'O(f)(k) = p(h™") f(kg) = f(kgh).
and if f € F(K,9W) 1K Also
OY(f)(k) = ¥(f)(kg) = f(k)

S0 9 is inverse to ©. O
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6.3 Frobenius Groups

Theorem (Frobenius 1901). Let G be a finite group acting transitively on a set X.
If each g € G\ {e} fixes at most one element of X then

K={etU{geG|lgx#xVreX}

is a normal subgroup of G of order | X|.

Definition (Frobenius group). A Frobenius group is a finite group G that has a
transitive action on a set X with 1 < |X| < |G| such that each g € G \ {e} fixes at
most one element of X. It follows from Frobenius 1901 that Frobenius groups can’t
be simple. The subgroup K is called the Frobenius kernel and any of the subgroups

Stabg(x)

for x € X are called Frobenius complements.

Example.

(1) G = Dsg,. For n odd acting on vertices of an n-gon in the usual way. The
reflections fix precisely one vertex and the non-trivial solutions fix no vertices.

=16 1)
*={0)

a,beIFp,a;éO}

:UG]Fp}

acting on

by matrix multiplication.

[ Note. No proof of Frobenius 1901 is known that does not use representation theory! }

Proof of Frobenius 1901. Fix x € X and let H = Stabg(z) so |G| = |H||X| by Orbit
Stabiliser theorem. By hypothesis if g € G\ H then

{e} = Stabg(gz) N Stabg(x).

Thus
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() |Ugee 9597} = [Uex Staba(@)| = (||~ 1)|X| +1
(ii) If hl,hg € H then [hl]H = [hQ]H <~ [hl]G = [h2]G’-
(iii) Ca(h) = Cy(h)if he H\ {e}.

By (i),

K| =

{epu (G\ U Stabc(iﬂ))‘ = [H|[X| = ((H] = DIX][+ 1) + 1 = |X]|

reX

as claimed. We must show K < G.

If x is any character of H, we can compute Ind gxz

mdGug = Y 1l
! (Rl Cldle Cu ()]

1G] TS
‘H‘X(e) ifg=e

= q x(h) if [glc = [h]c # {e} by (i) and (ii)
0 if ge K\ {e}

Suppose Irr(H) = {x1,...,xr} and let

0; = Ind gxi —xi(e)lg — xi(e) Indg]lH € R(G)

(this is sort of the magic bit). So

xi(e) g=e
0:(9) = § xi(h) [9]¢ = [h]c for some h € H

xie) geK

If 6; were a character of a representation of G then the kernel of the representation would
contain K. Since 0; € R(G), 0; =Y n;1; for n; € Z and ¢; € Irr(G). Now we calculate:

1
(0:,0:)c = il > 16i(g)

geG

é(zng+ZM@ﬁ

heH\{e} keK
X
%AZWWQ
heH

= (Xis Xi)H
=1
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So y_n} =1 and §; = +1); for some j. But g;(e) = xi(e) > 0 s0 ; € Irr(G).
To finish we write i,
9 = Z Xi(e)Oi
i=1

and so 0(h) =37, xi(e)xi(h) =0 for h € H\{e} by column orthogonality. Also 0(k) =
S xi(e)? = |H| by column orthogonality. Thus K is the kernel of the representation
corresponding to 6. O

In his thesis, John Thompson proved (among other things), that K must be nipotent or
equivalently the product of its Sylow-p-subgroups.
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7 Arithmetic Properties of Characters

We'll assume G is finite and k& = C.

7.1 Arithmetic results

The following facts will be proved in Number Fields next term.

Definition. z € C is an algebraic integer if it is a root of a monic polynomial with
integer coeflicients.

Facts

(1) The algebraic integers form a subring O of C.

(2) Any subring of C that is finitely generated as an (additive) abelian group is contained
in O.

(3) If 1 € ONQ then z € Z (see )

For (1) and (2), see GRM Example Sheet 4, Q13 from 2023. For (3), see Numbers &
Sets Example Sheet 3, Q3 from 2021.

Lemma. If y is a character of G then x(g) € O for all g € G.

Proof. We know that x(g) is a sum of n-th roots of unity (n = |G|, say). Each such n-th
root of unity satisfies X — 1 and so lies in O. So x(g) € O by Fact (1). O

The group algebra

We now want to make the k-vector space kG into a ring. There are two sensible ways
to do this. One is by pointwise multiplication making kG a commutative ring. More
usefully for us right now is the comwvolution product

(fifo)(g) =D filgm)folz™) = > file

xeX z,yeG
Y=g

that makes kG into a (usually) non-commutative ring.
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We can verify that 640, = dg for all g,h € G. So we can rephrase the product as

(Tocan,) (z uHah) S (S0 5
heG

keG

From now on we’ll have this product in mind when we view kG as a ring. A (finitely
generated) kG-module is “the same” as a representation of G. Given a representation
(p,V) of G we make V into a (finitely generated) kG-module via

Fo=> floplgv VeV, fekG.
geG

Conversely, given a finitely generated kG-module M, the underlying k-vector space is a
representation of G via

p(g)(m) = 6g.m Vme M,g e G.

Moreover, under this correspondence G-linear maps correspond to kG-module homo-
morphisms.

Exercise: Suppose kX is a permutation representation of GG. Calculate the action of
f € kG on kX under the correspondence.

It will prove useful to study Z(kG), the centre of kG; that is the subring of kG consisting
of elements f € kG such that fh = hf for all h € kG. This is because for f € Z(kG),

> f(9)nlg) € Homa(V, V)

geG

for every representation (p, V') of G.

Lemma. Suppose f € kG. Then f € Z(kG) if and only if f € Cg the space of class
functions. In particular, dimy Z(kG) = #conjugacy classes in G.

Proof.
fekG <= fh=hf VhekG
= foy=06q4f VgeG
= g1fog=f (since . = 1 and 6,104 = &)
But
(85-1f0g)(x) = > (64— f) @y~ "), (y)
geG
= (8g-1f)(xg™")
=flgzg™!) Vged
So f € Z(kG) if and only if f € Cg as required. O
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Remark. The multiplication on Z(kG) and Cg will not be the same even though
their k-vector space structures are the same even though both are commutative.

Notation. Given g € GG define the class sum

C[g]g(x) _ {1 U [g]G

0 z¢lglc
Then if [g1]q, - - ., [gr]c is a list of conjugacy classes in G we write
Ci = Clgle-
We used to write ligie for C;. We have switched to draw attention to the different
multiplication.
Proposition.
,
l
C Z‘C 7§ = Z aij C l
=1
where

ai; = {(2,y) € [g1) x lgjle | vy = g1} € Z.

The aéj are called the structure constants of Z(kG).

Proof. Since Z(kG) is a ring,

CiC’j = Z aﬁjCz
=1

for some aéj € k. But we explicitly compute
al; = (CiCy)(q1)
= Z Ci(z)C;(y)

z,yeG
= [{(z,9) € [gile x [g;]e | 2y = gi}|

as required. O

SUppose now that (p, V) is an irreducible representation of G. Then we’ve seen that if
z € Z(kG), then

z2: V=V, zv= Z 2(g)p(g) € Hom¢(V, V) = kidy
geG
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(k algebraically closed). So we get a k-algebra homomorphism
wy: Z(kG) = k

where z € Z(kG) acts by w,(.)idy on V. Taking traces we see

(dim Vi)wpey = > 2(9)x,(9)

geG
o () = S 29)%(9)
= P( ) g%c:; Xp(e)
— wlC) = 28 g (h

We now see that w, only depends on x, so we can write wy, = w,.

Lemma. The values w, (C;) € O for all irreducible characters x.

Note that htis is not immediately clear as ﬁ ¢ O for x(e) # 1.

Proof. Since wy is an algebra homomorphism,

wy (Ci)wy (C5) = Zaéij(cl) (*)
=1
so the subring of C generated by the w, (C;) is a finitely generated abelian group under
+. By Fact (2) in Section 7.1, it follows that ecah w, (C;) € O. O
Lemma.

S G| x(g9i)x(95)x (9, ")
Y \CkﬂgﬂHCk#9ﬁ|X;§;G)

In particular, aﬁj is deterined by the character table.

Proof. By (%) and ()

~—

x(9i

" alix(a)llgel
x(e) 2

= xkey
TODO O

|[gi]g|’;if}ugﬂc| -
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7.2 Degree of irreducible representations

Theorem. If V is a simple representation of G then dimV | |G|.

Proof. Let x = xy and we’ll show % eONQ="7.

o _ 1 > x(@)xlg™)

dimV — x(e) eyt

_ X(l) > llgidalx(o)x(s ™)

=> wylg)x(g )
=1
co

since O is a ring and x(g; ') and wy(g;) are all in O. But also di'gk/ € Q, so dﬁ‘v €EZ=

O NQ as required. 0

Example.

(1) If G is a p-group and Y is an irreducible character then x(e) is always a power of
p. In particular, if |G| = p? then as ) @) x(e)? = |G| we see that x(e) = 1
for all x € Irr(G), i.e. G is abelian.

x€lrr

(2) If G is A, or S, and p > n is prime, then p can’t divide the degree of an
irreducible representation.

In fact a strange result is true.

Theorem (Burnside (1904)). If (p, V) is a simple representation of G then we have
dimV | |G/Z(G)|.

Compare to |[g]a| = % % forall g € G.

Proof. It Z = Z(G) then by Schur’s Lemma p|z : Z — GL(V) has image contained
in k*idy. p(z) = A.idy say for each z € Z. For each m > 2 consider the irreducible
representation of G™ = G x G x --- x G given by p®™ : G™ — GL(V®™). If z =

m times
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(21y...,2m) € Z™ then

p®m<z) = Z )\ziidV(X)nL
=1

So if T]"; 2z = 1 then z € ker p®™. So V™ can be viewed as an irreducible degree
(dim V)™ representation of %7 where

A {(21,...,zm) ezm

ﬁzi = 1} < zZ™m.

i=1

Moreover |Z'| = |Z|™~1. So by previous theorem (dim V)™ | ‘g(‘;,ll"_ll . Now if p is a prime
and p® | dim V' then p*™ | Iﬁﬁl = ‘%‘m |Z|. By taking m large enough that p™ { |Z|,
we see that p? | ‘%‘ Thus dim V' | |%‘ as claimed. O

Proposition. If G is a simple group then G has no irreducible representations of
degree 2.

Proof. If G is abelian then all irreducible representations have degree 1. So we may
assume that G is non-abelian. If |G| is even then dx € G of order 2. By Example
Sheet 2, Question 2, if x is an irreducible character of G then x(z) = x(e) (mod 4). So
if x(e) = 2 then x(z) = £2 so p(z) = £I. Thus p(x) € Z(p(G)), % . (G is non-abelian
and simple, and p is non-trivial).

Now if |G| is odd, we're done by (either of) today’s theorems so far. O

7.3 Burnside’s p?¢® theorem

Lemma. Suppose 0 # a € O is of the form Yo, A for some A; € C such that

A" =1 for some n € N. Then |a| =1 (and so all \; are equal).

Sketch-proof (non-examinable). See Galois Theory for the details.
By assumption, o € Q(e), € = e*™/™. Let G = Gal(Q(¢)/Q). It is known that

{8eQle)|o(B)=pVoeGt=Q.
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Consider N(a) = [[,¢g0(). It is easy to verify that o(N(a)) = N(a) for all o € G,
i.e. N(a) € Q. Moreover, N(a) € O since if « satisfies a monic integer polynomial then
every o(a) (o € G) satisfies the same polynomial. Thus N(a) € Z. But for each o € G,

O’()\Z) < 1.

=1

3=

lo()] =

So N(a) = £1 and |a| = 1. O

Lemma. Suppose y is an irreducible character of G and g € G such that x(e) and
|[9]c| are coprime. Then [x(g)| = x(e) or [x(g)| = 0.

Note that if |x(g)| = x(e) then g acts as a scalar on the corresponding representation V'
and so p(g) € Z(p(G)).

Proof. By Bezout’s lemma, we can find a,b € Z such that ax(e) + b|[g]c| = 1. Then

ax(g) + b (![g]i(lzc)(g)) _x9) _ L co

Since x(g) is a sum of x(e) |G|-th roots of unity, it follows from the last lemma that
a=0or|a =1 O

Proposition. If G is a finite non-abelian group with g # e such that |[g]¢| has
prime power order, then G is not simple.

Proof. Suppose for contradiction that G is simple and g € G \ {e} such that |[g]c| = p"
for some prime p. If x € Irr(G) \ {1¢} then |x(g9)| < x(e) since otherwise p(g) is a scalar
and lies in Z(p(g)) = 1. Thus by the last lemma, for every non-trivial character y, either
p | x(e) or x(g) = 0. By column orthogonality,

x€Irr(GQ)
Thus . (@)
(&
—= Y g eonq=z x 0
p x€lrr(G) p

x#1
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Theorem (Burnside 1904). Let p,q be primes and G a group of order p®¢® with
a,b>0and a+ b > 2. Then G is not simple.

Proof. Without loss of generality b > 0. Let Q be a Sylow-p-subgroup of G and pick
g€ Z(Q)\ {e} (possible since Q is a g-group). Now ¢° | |Ca(g)| so |[glg| = p" for some
0 < r < a. The Theorem follows from the last proposition. O

( N
Remark.

(1) It follows that every group of order p%q® is soluble, i.e. there exists a chain of
subgroups G = Gg > G1 > Gy > --- > G, = {e} such that for all i, Gi11 < G;
and G;/Gj41 is abelian.

(2) Note that |A5] = 22-3 -5 so a finite simple group can have precisely 3 prime
factors. Conjugacy classes are 1,15, 20, 12,12 not prime power order.

(3) The first purely group theoretic proof of the p®g’-theorem first appeared in 1972.

. J
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8 Topological Groups

In this chapter, kK = C. This is important, because we will be using topological prop-
erties of C (contrary to previously, where we normally are just using the fact that it is
algebraically closed).

8.1 Definitions and Examples

Definition (Topological group). A topological group G is a group G which also has
the structure of a topological space such that the multiplication map G x G — G,
(x,5) + xy and the inversion map G — G, x — x~! are both continuous.

Examples

(1) GL,(C) with the subspace topology from Mat,(C) ~ C™, since

- 1
_ . . -1 _ :
(AB);j = 321 A;i, By and A= Tot adj A

are both continuous. More generally, if V' is any C-vector space we can give GL(V)
the topology that makes the isomorphism GL(V) — GL,(C) (given by choosing a
basis) a homeomorphism. Since conjugation on GL,(C), X + P~!X P is continuous
for all P € GL,(C), this does not depend on the choice of basis.

(2) G finite with discrete topology since all amps G xG — G and G — G are continuous.
(3) O(n) = {A = GL,(R) | ATA=1},S0(n) = {A € O(n) | det A = 1}.

(4) U(n) ={A € GL,(C) | A'A= I}, SU(n) = {A € U(n) | det(A) = 1}. In particular,
U(l)=8'=({z e C*||z| =1},-).

5) * (non-examinable) G a profinite group such as Z, the completion of Z with respect
P
to p-adic metric.

N
Definition (Representation of a topological group). A representation of a topolog-
ical group G is a continuous homomorphism

p:G— GL(V)

(V' a vector space over C).
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( N
Remark.

(1) If G is a (finite) group with the discrete topology then every function G —
GL(V) is continuous and we recover the old definition.

(2) If X is any topological space then o : X — GL,(C) is continuous if and only if
a;j : X = C, a;j(x) := ax);; is continuous for all i, j.

8.2 Compact groups

Our most powerful when studying finite groups was the operator ﬁ > e We want to
replace > by |[.

Definition (Haar integral). For G a topological group and C(G,R) = {f: G - R |
f continuous}, a linear map [, : C(G,R) — R is called a Haar integral if

i) [o1g =1 (So [, is normalised so that total volume is 1).

(i) [4 f(zg)dg = [, f(g9)dg = fG (gz)dg for all z € G (so [, is translation
invariant). (we erte fG g)dg = fo and fG (zg)dg means apply fG to
g — f(zg) € C(G,R)).

(iii) [, f > 0if f(g) >0 for all g € G (positivity).

Example.

(1) If G is finite then [, f = ﬁ > g f(g) is a Haar integral.

(2) IfG=5 [, f= 0% f(e?)dd is a Haar integral.

Note that for any R-vector space V, [ induces a linear map (also called [)

/G:C(G,V)—>V

Under the identification V ~ V** for § € V*, f € C(G,V),

0( | f> = [ otsaag
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More concretely, if vy, ..., v, is a basis for V and f € C(G,V) then

f=> fwi
i=1

LS

This map is also translation invariant and sends a constant function to its only value.
Moreover if a : V' — W is linear and f € C(G,V), then

()

In particular if V' is a C-vector space v — iv is R-linear so [ : C(G,V) — V is C-linear.

with f; € C(G,R) and

Theorem. If G is a compact Hausdorff group then there is a unique Haar integral
on G.

Proof. Omitted. O

All the examples in Section 8.1 are compact Hausdorff except GL,(C) which is not
compact. We'll follow standard practice in this field and write “compact” to mean
“compact and Hausdorff”.

Corollary (Weyl’s unitary trick). If G is a compact topological group then every
representation (p, V') of G is unitary.

Proof. As for finite groups, let (e, o) be an inner product on V. Then
v.0) 1= [ (o(a)v. playu)dg
is the required G-invariant inner product. Since, for x € G and v,w € V,
(P, p(wy) = [ (plaa)o. plaryu)dg

:/(p(g)v,p(g)w>dg (by G-invariance of/)
G G
= (v,w)

Clearly (e, e) is an inner product by using C-linearity of fG and positivity of fG. O

77



( I
Remark. It follows that every compact subgroup of GL,(C) is conjugate to a
subgroup of U(n).

- J

Corollary. All representations of a compact group are completely reducible.

If G — GL(V) is a representation then x, := Trp is a continuous class function on G.

Lemma. If U is a representation of G compact then

dimUY = / X-
G

Proof. Let m € Homy(U,U) be defined by 7 = [, p € Homy(U,U). If z € G then

p(x) -7 = p(z) /G pg)dg = /Gp(fvg)dg =

since fG is translation invariant. So Im7 < UC. If uw € U then

m(u) = (/Gp(g)dg) (U)=/Gp<g)udg=/au:u

Thus 7 is a projection onto U®. So

dimUG:TrW:Tr</p>:/Trp:/X.
G G G

Corollary (Orthogonality of characters). If G is a compact group and V, W are
irreducible representations of G then

1 ifVeeWw

<XVaXW>G: {0 lfVLﬁW

where

(1, fode = /G Fi@)f2(g)dg

To prove this as in the finite case we use x,(¢~*) = Xv(g). This holds because V is
unitary.
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8.3 Worked example: S!

Goal: Understand the representations of S'. Since
1 2m "
> — e)de
froge |1
is a Haar integral, these representations are all unitary and hence completely reducible.
So it is enough to understand the irreducible (unitary) representations of S?.

By Schur’s Lemma all such have degree 1, i.e. we have a correspondence
{irreducible representations of S'} <+ {continuous group homomorphisms S* — S'}.
Since R — S!, # — ?™® induces an isomorphism of topological groups
R/Z = S

continuous group o continuous group
homomorphisms S! — St homomorphisms 6 : R — St

ker 6 > Z}

Fact: If f : R — S! is a continuous function with f(0) = 1 there is a unique continuous
function a : R — R such that a(0) = 0 and f(z) = €>™*®) for all z € R.

R

A
a - i
L 827”,1
-
-

R, gt

Sketch proof. On small intervals we can define a(z) = m and we choose the branch

of log so that «(0) = 0 and « is continuous. O

Lemma. If § : R — S! is a continuous group homomorphism there is ¢ : R — R a
continuous group homomorphism such that (z) = e*™*@) for all z € R.

Proof. Our fact uniquely determines ¢ : R — R continuous function such that ¢(0) =0
and 0(z) = e2™%(®) We must show 1 is a group homomorphism. To this end we consider

A:R*5R
A(a,b) = p(a+b) —(a) —(b)
We must show A = 0. It is easy to see that A is continuous. Also,
M@0 = f(a + b)0(a)1O(B) " =1

so A takes values in Z. So as R? is connected, A is constant (Z is discrete). But
A(0,0) =0, so A =0 as required. O
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Lemma. If ¢ : (R, +) — (R, +) is a continuous group homomorphism then 3\ € R
such that ¥ (z) = Az for all z € R.

Proof. Let A = (1). Then ¢(n) = An for all n € Z (¢ is a homomorphism). So
n
map <E> =1(n) =An

for all > € Q (¢ is a homomorphism), i.e. ¥(x) = Az for all x € Q. But Q is dense in
R, so ¢(z) = Az for all z € R. O

Theorem (Representations of S!). Every irreducible representation of S! is 1-
dimensional and is of the form z — 2" for some n € Z.

Proof. We've already seen that if p : S' — GL4(C) is an irreducible representation then
d = 1and p(S') < S1. Moreover p induces a continuous homomorphism 6 : R — S* given
by 6(x) = p(e?™*). By the last two lemmas, there exists A € R such that §(z) = e2™A*
for all z € R. Since 6(1) = p(e*™) = p(1) = 1, we deduce €™ = 1, ie. A\ € Z. So
p(e2mi) = (e2™)A for \ € Z. O

The theorem says that the “character table” of S! has rows given by x, for n € Z,
Xn(z) = 2".

(unitary 1-dimensional characters of Z are all of the form n s e for some e € S1).

Notation. Z[z,271) = {ZnEZ an2"

an €L,y ez lan| < oo}j a ring under nat-

ual operations.

If V is any representation of S! then it decomposes as a direct sum of 1-dimensional
subrepresentations and its character xy = > .z an2" with all a, > 0 and ) a, =
dim V', where as usual a,, is the number of copies of (z +— 2") in V.

So
R(SY = {x —X'| x, X are characters of S'} = Z[z,27")

By orthogonality of characters,

1 °n i(m—n
<Xnv Xm>Sl = 27_[_/0 627T ( )0d0 = dm,n

1 2 ) »
an = (Xn,XV)s1 = 2/ xv (e9)e™"dg
™ Jo
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and so )
, 1 [ . , A
0\ _ E - P\, —ing ing
XV(e ) N ne”L <27T /0 XV(e )e d¢> ‘

So Fourier decomposition of xy decomposes xy into irreducible characters and the
FOurier mode is the multiplicity.

( )
Remark. In fact by the theory of Fourier series any continuous function on S! can
be approximated uniformly by a finite C-linear combination of x,,. Moreover the x,
form a complete orthonormal set in the Hilbert space

s ={r:8 o] [Tirenpar <o)/~

of square integrable functions on S, i.e. every function in L?(S') has a unique

expression as
. 1 [27 ) . .
0y _ 1P\ ,—ing ing
1 =3 (5 [ seea0) o

ne”

converging with respect to the norm || f||? = 027T | £(?)[2df. We can phrase this as

~

2 1\ _
L (S ) = @HGZCXn

(@ means complete direct sum), which is an analogue of

CG= P @nV)V
Velrr(G)

for finite groups (cf Peter Weyl Theorem).

. J

8.4 Second worked example SU(2)

Recall SU(2) = {A € GLy(C) | A' A= I,det A = 1}. If

A= (Z Z) € SU(2)

then as det A =1,

s
i
|
/|\
Q&
o |
>
~~_
|
R
< Ql
ISH oY
N—_
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Thus d = @ and ¢ = —b. Moreover, |a|? + [b]?> = 1. In this way,

SU(2) = {<_“b 2)

which is homeomorphic to S? C R* ~ C2. More precisely if

H:R-SU(Q)z{( ° Z)}CMQ((C)

—w

a,b € C,lal® + |b]* = 1}

Then ||A||? = det A defines a norm on H ~ R* and SU(2) is the unit sphere in H with
respect to this norm. If A € SU(2),

[AX] = X[ = XA VX cH

(since det A = 1). So SU(2) acts on H on both left and right by isometries. So after
normalisation, usual integration on S? defines a Haar integral on SU(2), i.e.

1
[ / f
/SU(2) 212 Jgs
1

Here 5 is the volume of S3 in R* with respect to usual measure. We now try to

understand conjugacy classes in SU(2). Let

T:{(g o)

z € 51} < SU(2)

Proposition.
(i) Every conjugacy clsas in SU(2) contains an element of T’

(ii) More precisely, if O is a conjugacy class in SU(2), ONT = {t,t~1} for some
teT. Ift=t"1t=+Iand O = {t}.

(iii) There is a continuous bijection
{conjugacy classes in SU(2)} — [-1,1)
1
A 3 Tr A

Proof.
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(i) Every unitary matrix has an orthonormal basis of eigenvectors. That is, for A €
SU(2), there exists P € U(2) such that P"*AP € T. Thenif Q = ——~—P € SU(2),

Vdet P
Q'AQ =P AP €T, ie. [Algyo NT # 0.
(ii) If A = =£I the claim is clear. Otherwise
[Alsu(e) = [tsu() for some t € T

={gtg”" | g €SU(2)}

All elements of gtg~! have the same eigenvalues as t. So if ¢/ = gtg~! € T then
' e n{t*}, ie. [Alsue NT C {t*'}. But if

s <01 é) € SU(2)

then sts~1 =¢1L.

(iii) [Alsuce) = +Tr A is well-defined and injective since conjugate matrices have the
same trace and if %TrA = %TrB for A, B € SU(2), since det A = det B = 1, then
A and B have the same characteristic polynomial and hence the same eigenvalues,
so by (ii) they are conjugate. Moreover

1 —1i6
3 Tr <€ 0 69i9> = cos 0

so the image of our map is [—1,1). O

Corollary. A (continuous) class function f : SU(2) — C is determined by its
restriction to 7" and f|r is even, i.e.

(G ) 9) e

We’ll write

for z € 8! i.e. identify T and S*.

Notation. We’ll write

Zlz,z )Y ={f € Zlz,z7") | f(2) = f(z71)}
= {Z anz" | an € Zyan = a_p¥n € Z}
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Lemma. If y is a character of a representation of SU(2) then x|r € Z[z, z71)".

It follows that R(SU(2)) < Z[z,271)®" and we're going to see that it is an equality.

Proof. If V is a representation of SU(2) and x its character, then
XIT = Xpegsvey,

since every character of T = S! lies in Z[z, z~1) and x/|r is even, we're done. O

Let’s write

0, = {Ae SU(2) | ;TrA:w}

for € [-1,1). These are the conjugacy classes of SU(2), O; = {I}, O_; = {—I} and
for —1 <z < 1. There is some (unique) § € (0, 7) such that cosf = = and

Oy = {(_ab Z) ‘ (Ima)® +pf> =1—2% = sin29}

(since Rea = x). That is O, is a 2-sphere of radius |sin 6.

Thus if f is a class function on SU(2), since f is constant on Ocesg,

fu 70005 |, |f,, 7]

1 " :
= 27r2/o Amsin? 0 f (¢%)d6
1 27 )
=— f(e?)sin% 0de
T Jo

84



since f is even. Note this is normalised correctly since

1 27
/ sin20dd =~ =1.
™ 0 v

So we can compute (f, g)sy(z) on class functiosn (and so characters) as

1 27T7 ) ) .
(fs9)su) = =/ f(e)g(e?) sin% 0do

8.5 Representations of SU(2)

Let V,, be the C-vector space of homogeneous polynomials in « and y of degree n. So

Vi = EB(Cxiynfi
i=1
has dimension n 4+ 1. GL2(C) acts on V,, via
pn : GLo(C) — GL(V,,)
a b
pu (4 0)) () = flaa + eyt dy)

i.e.

Pn <<Z Z)) 2y = (ax + cy)' (bx + dy)’.

Example. Vj = C is the trivial representation.

Vi = Cx @ Cy is the natural representation of GLy(C) on C? with respect to basis
x,y.

Vo = Ca? @ Cay @ Cy? and with respect to this basis,

b a? ab b2
P2 <(a d>> = 2ac ad+bc 2bd
¢ c? cd d?

In general V,, ~ S™V] as representations of GLa(C).

Since SU(2) is a subgroup of GLy(C) we can view these V;, as representations of SU(2)
by restriction. In fact we’ll see the V,, are precisely the irreducible representations of
SU(2).
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Let’s compute xv, |7 of (pn, Vp)-
z 0 i =1 NG i
polly -1) ) (EY) =)z y) == aty
So for each 0 < j < n, Caxiy™ 7 is a 1-dimensional representation of 7' with character
22" and
ontl _ L —(n+1)

XV (2) = 2"+ 2" 2 T T = — o €Zl 2

Theorem. Each V,, is irreducible as a representation of SU(2).

Proof. Let 0 # W < V,, be SU(2)-invariant. We must show W = V,,. W is also T-

SU(2)

invariant as Res 'V, = EB;L:O Ca’y™7 is as direct sum of non-isomorphic 1-dimensional

subrepresentations. (*) W has a basis that is a subset of {z7y" 7 | 0 < j < n} (unique-
ness of isotypical decomposition). Thus z/y"7 € W for some 0 < j < n.

(1 ) emmis e ew

so by (x), 2 € W. Repeat the same calculation for j = n, we get (x —y)” € W. So
2y" P e W forall 0 <i<mnand W =V,. O

Exercise (Alternative proof): Show

. . 2
1 2 e(n—l—l)zﬂ _ e—(n+1)10 )
(XVns Xvn>SU(2) = 27T/0 ( il — o—ib sin?6dh = 1

Theorem. Every irreducible representation of SU(2) is isomorphic to V;, for some
n > 0.

Proof. Let V be an irreducible representation of SU(2), xv|r € Z[z,27 1. Let x,, =
xv,|r forn >0,s0 xo =1, x1 = 2+ 271 xo = 22 4+ 1+ 272 ete. It is easy to see
that there exists Ao, A1,..., Ay € Z such that xv|r = >_;"; A\ixs. By Orthogonality of
characters,

1 ifV=V

i = XV, XV;)su(2) = {0 Vo

Since xy # 0 there is some 7 such that \; =1 and xv = xv;. O
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We want to understand ® for representations of SU(2). We know
XVeW = XVXW
for representations V and W of any group GG. Let’s compute some examples:
_ —1\2 _ .2 -2 _
Xvieva(2) =(z24+277)" =2"+2+27" = xv, + Xy
S0 X1, ® xv; ~ V2 © Vo.
_ —1y(,2 -2y _ .3 -1 -1 -3 _
Xviev,(2) = (2+27)(Z"+1+277) =2+ 2427 +z2427 +277 = xi(2) + xni (2)

soViVh~V3a V.

Proposition (Cletsch-Gordon rule). For n,m € N,

Vi@V 2 Vom @ Vogm—2® -+ @ ‘/\n—m|

Proof. Without loss of generality n > m. Then

1 _ Z—(n—l—l)

2"t
(anm)(z): < - > (Zm+zm—1+...+z—m)

<Zn+m+1—2j _ Z—n+m+1—2j>

zZ— 2z

z—z1

<
Il
o

I

Xn+m—2j(2)

I
NE

[
Il
o

8.6 Representations of SO(3)

Proposition. The action of SU(2) on the 3D R-normed vector space

{&X

with norm ||A||?> = det A by conjugation induces an isomorphism of topological
groups

a+a:O} C M,(C)

SU(2)
FE;Y — SO(3).
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Proof. See Example Sheet 4, Question 4 (for more hints see lecturers notes from 2012).
O

Corollary. Every irreducible representation of SO(3) is of the form V5, for some
n > 0.

Proof. Tt follows from the previous proposition that the irreducible representation of
SO(3) correspond to irreducible representations of SU(2) whose kernel contains +1. But
it is easy to see that —I acts on V,, by (—1)". O
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9 Character table of GLy(FF,)

9.1 F,

Let p > 2 be a prime, ¢ = p® a power of p for some a > 0 and let F, be the field with
q elements. We know that F ~ Cy—; and F; — F7, z — 22 is a homomorphism with
kernel {£1}. Thus half the elements are squares and half are not. Moreover, = 2’

sends squares to 1 and non-squares to —1. Let ¢ € IFqX be a fixed non-square. So
q—1

€2 = —1and let
quz{a+b\@]a,belﬁ‘q}

the field extension of F, (with respect to the obvious operations) of order 7.

Every element of F, has a square root in Iﬁ‘g, since if A € F, is a non-square then %

is a square, p? say, and (vep)? = ep? = A. Thus every quadratic polynomial with
coefficients in F, factorises over Fz. Notice (a + by/€)? = a? + W't =a - by/e since
D | (‘j) for 0 < i < gq.

Thus the roots of an irreducible quadratic over Fy are of the form A, A7 (A — A7 is like
complex conjugation).

9.2 GLy(FF,) and its conjugacy classes

We want to compute the character table of the group

GLy(F,) = {(‘CL Z)

The order of GLy(F,) is equal to the number of bases for Fg over F,. Thisis (¢ —1)(¢*—
q) = q(q — 1)*(¢ + 1). First we compute the conjugacy classes of GLo(F,) =: G. We
know from linear algebra (rational canonical form) that for A € G, [A]g is determined
by ma(x), the minimal polynomial and degmy(z) < 2 (Cayley-Hamilton). Moreover
mA(0) # 0.

a,b,c,dqu,ad—bc#O}.

There are 4 cases:

Clse 1: ma(z) = (x — A) for some A € F;\. Then A = A so Cg(A) = G and |[A]g| =
[{A\I}| = 1. There are ¢ — 1 such classes — one for each \.

C2se 2: ma(z) = (x — \)? for some \ € Fz. Then
Al
we= | )
0 Nlg

89



R ()R

(compute!). So

a,bGIFq,a#O}

12
el = S = - via )

There are ¢ — 1 such classes — one for each .

C3se 3: ma(z) = (v — \)(z — p) for A\, p € F distinct. So

[Ale = [(3 m B [(‘5 3)]6;
(0 0) {63

_alg—=1)*(g+1)
(¢ —1)?

There are (qgl) such classes — one for each pair A, u.

Moreover

a,dGF;} =T

SO

I[A]| =q(qg+1)

C4se 4: my(x) is irreducible over F, of degree 2. So for some o € F2 \Fy, a = A+ /e
for some A\, p € Fy, n # 0,

ma(x) = (x — a)(z — a¥)
= (z° — (a + a?)z + aaf)
— (x2 — (Tr A)x + det A)

ao-[G - [0 7,

Since these matrices have trace 2\ = o + o? and det A\? — eu? = aa?. Now

(G )16 %)

If a® — e2b = 0, then a®? = eb? so e isa square or a = b= 0. So |K| = ¢*> — 1

Then

a,bEFq,a2—ab27é0} =K

" (4= 1+ 1)
qg(g—1)"(¢g+1
Alg| = =q(q—1).
el =g+~
There are @ = (g) such classes — one for each pair {a,a?} C Fp2 \ F,.

In summary:
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ftep 2 Co r[Al]G\ # s
=

<8 i) {(8 Z)} (@=D(g+1) | ¢-1

(6,) | ™ | aeen |0

G x| ween |

The groups T and K are both called mazimal tori, i.e. they are maximal subgroups such
that they are conjugate to a diagonal subgroup in GLy(F) for some F/F,. T is called

split and K is called non-split.
Some other important subgroups of G are

o The subgroup of scalar matrices (the centre of G):

Z ={\[|AeFs}.

e A Sylow-p-subgroup of G

1 b
{0 1) [rerd
SO
a b
~={(5 1)
e A Borel subgroup of G
a b
o={( o)

Then N 9 B and B/N ~T ~F; xF ~Cy1 x Cy1.

a,bEFq,a#O}

a,de]F;,bqu}

Start of
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9.3 The character table of B
As a warm-up we compute the character table of

p=1 )

a,deIE‘;,beIFq} <@,
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a group of order (¢ — 1)?q.

Recall

10
(e pende
B/N ~T ~F T

(o))

and

The conjugacy classes in B are

Rep Cp | size of class #£classes
A0

< 0 )\) B 1 q—1
Al

< 0 )\) ZN q—1 q—1

(3 2) T q (¢—1)(qg—2)

Moreover if O, : {representations Fy — C*} then ©, is a cyclic group of order ¢ — 1
under pointwise operations since F,* >~ €, and for each pair 0, ¢ € ©, we can define a
1-dimensional representation of B (factoring through B/N) given by

wa (5 1)) =#@s

giving (¢ — 1)? 1-dimensional representations. We will build the remaining irreducible
?? of B by induction from ZN.

ZN ~F x (Fy, +)
a b -1
<0 a> — (a,a”"b)

so given a 1-dimensional representation v : (F,, +) — C* and § € ©,4, we can define a
1-dimensional representation of ZN

Py - ZN — C*
a b _
<0 a) — 0(a)y(a 1b)

Now ZN < B, so by Mackey’s irreducibility criterion,

Ind % NP6~ is irreducible <= 9pg . # po ~
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for all yZN € B/ZN \ ZN/ZN. Since

oo ) [rem)

is a coset representative for B/ZN and
t a b\\ 10 a b\ (1 0O
Pori\o o)) =P \o A1) 0 a)\0 A
a b
— P \\0 a

= 0(a)y(a"t\b)
We see that

t)\pG,’y =Py V(Ab) = V(b) Vb € (F(b +)
— y(A=1)b) =1 vb e F,
— y=1Ip,orA=1

So Ind g ~NPo,y is irreducible if and only if v # 1F,.

Now since

. Cal0)
(IndZy) = [Q}ZNZCWB ‘CZN(g)’x(g).

We can compute

a2y (5 3)) = oaons (5 ) = ta= 1oy
) (o 3)) = 2 fmwe (6 3))

beFy

=0 [ | D) | -1

beF,

= 0N (g{7, Lr,)rp+) — 1)
—0(}) v # Fq
(¢—=1)0(7) ~v=1p,

witv- (3 1)) o

Let pg :=Ind g NPo for v # 1p,, noting this does not depend on the choice of 7. Then
each gy is irreducible by earlier calculation and we have ¢ — 1 irreducible representations
of B all of degree ¢ — 1.

Thus the character table of B is
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A0 A1
(63 10
X0, | ON)G(A) | O(A)d(N) | 0(N)d(k) | 0,0 € Og
po | (@—1)0(A) | —6(N) 0 f €0,

e N
Remark.

(1) The 0 in the bottom right corner appears in (¢ — 1) rows and (¢ — 1)(¢ — 2)
columns. They are all forced to be 0 by a Lemma from Section 7.3, since order
of the conjugacy class is ¢ and the dimension of an irreducible representation
are coprime and these elements don’t act by scalars since the representations
are faithful and the elements are not in the centre.

e s )

and the second factor is a Frobenius group, so Example Sheet 3, Question 10
tells us that 7?7 of the second factor arise essentially as we have constructed
them.

aeIF;,beIE‘q}

9.4 The character table of G

As det : G — F is a surjective group homomorphism, for each 6 € ©4, fodet : G — C*
is a distinct 1-dimensional representation of G. We get ¢ — 1 in all. Next we’ll do
induction from B. Define
(0 1 a
= (1 o) e

G a)(0) (o 1) = ")

These elements are all disinct. Hence

and note that

|BsN| = ¢|B| = |G\ B

(G/B has order ¢+ 1). Thus BsN = BsB and G = B 1L BsB (Bruhat decomposition)
and B\G/B = {B, BsB}. By the proof of Mackey’s irreducibility criterion,

(Ind Gx, Ind Gx)a = (X, X) B + (Res Brspx, Res ghs 5°X) B
a b -1 _ d 0
No a)° T \b «
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So BN*B =T and

(Ind Gx, Ind Gx) = (x, X)B + (X|7 “X|7)71

() =6 )

Thus Wy, = Indgxg7¢ is irreducible if 8 # ¢ € ©4. These are called principal series
representations. We can also compute Wpy ¢ has 2 distinct irreducible summands:

where

(q—1)°
(Ind G 19, Ind Gpug) = 1+m Z l(g—1 =1+ )2 =q.
AeFy

For any character x of B,

mago (5 1))
0 3) (6 3)
i) )
V)

v (G

Notice Wy 4 ~ Wyg so so get (qgl) principal series representations. Also, Wyg =
Xo @ Wi 1 and

o (
V(G

>
m

Ind
Ind
Ind

Wi1 =Ind%1 = C(G/B)

is a permutation representation. Thus Wy ;3 = C @ Vi with V; an (explicit) irreducible
representation of degree ¢ (the Steinberg representation) and Wyo = xp & Vp where
Vo = 0® V1 (a twisted Steinbery representation). We've explicitly constructed (¢ — 1)+
(qgl) + (g — 1) irreducible representations. We have (1) irreducible representations to
go. It will turn out that they are indexed by irreducible representations of K such that
@ # @l up to ¢ < pl. We won’t explicitly construct these representations, just their

characters.
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We have found:

A0
(@ =10\ [gle = [(0 A)L

BB = g [g]eng i)]
G

0 otherwise

and
(Ind G g, Ind Gpe)a = q.

Our next strategy is to induce characters from K:
IFq2 — MQ (Fq)

A e
A+ /e — (H )\>

induces an isomorphism of rings F» to K U{0}. We will identify these rings. Under this
identification,

Fy < Z
A0
/\<—><0 A)
A ep q_ A —€u
wo o N) o \—p A

since (A + py/€)? = (A — py/e).

We want to understand Ind f(go for an (irreducible) character ¢ of K. First we consider
the double cosets K\G/K and then use Mackey to compute (Ind %¢,Ind%¢)g. For
ke K,geq,

Moreover

kgK = gK <= g 'kge K
— g kg € {k,k%}

([k]e N K = {k, k?}). Writing

we get
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so kgK = gK <= g 'kg =k or (tg)"'k(tg) = k. Furthermore since

CG<<)\ 5u>>: K ifu#0
pooA G ifu=0

so kgK = gK <= gK € {K,tK} or k € Z. It follows that

|K| ge KUtK
K .
|[KgK| = ‘2 |K|  otherwise
N——
=(¢?—-1)(¢g+1)
so there are
18 9
Gl -2K| _ x— % _ee-1-2_
K = K] 1 q-
151K 5] ¢+

double cosets of size ’%‘ | K.

Now KN!'K =K, KNIK = Z if g ¢ K UtK. Thus by Mackey,

(Ind o, Ind F)6 = (¢, )i + (0, "9 ic + > (plz,9¢l2)z-
9EK\G/K—{KtK}

Since 9|z = |z for all g € G, ' = ¢?. So if ¢ has degree 1.

q—1 o #

(Ind §p, Ind G o) = ,
¢ p=y

Next we compute

q(g—Dp(N) g= (A O)

0 A
Ind $o(g) = .
pla) +¢la) g=acFp\F,
0 otherwise

We can compute

(Ind G119 Ind Gu)g = |(1;‘ <Z(q2 — 1N qlg — Dp(A) + 0)
ANEZ

= 12100, ¢lz) 2
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If B, = Ind Gp = Ind G g — Ind G for 6 = ¢| 7.
(Be» Bo) = (Ind Gup, Ind Gug) — 2(Ind Fpag, Ind F o) + (Ind F g, Ind Fp)

g—1 p#F
=q¢—2q-1)+ .
q =1
1 e F el
)2 if p=¢?

Also
/B¢<<(1) (1)>> =(*-1)~(@@-1)=¢g-1>0

It follows that 3, is an irreducible character whenever ¢ # ¢?. Since 3, = Bq, 90‘12 =
and

He:o?# o} =q—1

(q2—1)2—(q—1) _ (g)

irreducible characters in this way.

We et

A0 Al A0
Gy G G aat | prop
X0 O(\)* 0(\)? O(N)0(1) 0(a?t) q—1
Vi | ao(n2 0 o(0)6(n) ooty | g1
Woe | (@+1)0(Ad(N) | O(N)P(N) | O(N)d(p) + d(N)0(1) 0 (51
Bo | (a=1)p(N) | —p(N) 0 —(p+ () | (9

We have not compute the representations corresponding to (3, explicitly. These are
known as discrete series representations.

Drufield found these in [-adic étale cohomology groups of an explicit algebraic curve
X/F,. They can also be found as p-adic de Rham cohomology groups over a similar
space. These can be viewed as generalisations of ‘functions on X’. This work was
generalised by Deligne-Lusztig for all “finite groups of lie type”. Our computation also
allows us to compute the character table of PGLy(F,) = GLQT(F") as its representations
are just irreducible representations of G where Z acts trivially, i.e. xg,Vp for 6% = 1,
Wo g1 for 60 # 6! and B, such that p|z = 17 (i.e. 9™ =1 as well as @7 # ). We

can then also compute the character table of PSLy(F,) = S%i(gq) which has index 2 in

PGLy(F,). These groups PSLy(F,) are simple if ¢ > 5 and this can be seen from the
character table.
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Index

2-transitive 41, 42

2-transitively 41

F 57, 58, 59, 60, 61, 62, 63

HomG 11, 12, 24, 25, 26, 27, 30, 33, 34, 35, 39, 43, 50, 58, 59, 60, 68, 69
G-invariant 10, 11, 17, 18, 20, 22, 24, 26, 50, 52, 58, 59, 77

G-invariant inner product 19, 20, 21

G inner product 31, 35, 37, 39, 40, 41, 43, 48, 55, 56, 59, 61, 65, 94, 96, 97
(f,9)c T8

G-linear 11, 24, 25, 68

Haar integral 76, 77, 79, 82

fG 76, 77, 78, 82, 84

Ind% 58, 59, 60, 61, 62, 65, 92, 93, 94, 95, 96, 97

Res 58, 60, 61, 62, 84, 86, 94

0O 67,70, 71, 72, 73

alternating power 52

A"V 52

character 30, 31, 34, 35, 36, 37, 38, 41, 42, 47, 48, 49, 56, 57, 61, 62, 65, 67, 70, 71, 72,
73, 80, 81, 83, 84, 86, 92, 94, 95, 96, 98

character of a representation 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 47, 48, 49,
50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 65, 66, 67, 70, 71, 72, 73, 78, 80, 81, 83, 84, 85,
86, 87, 92, 93, 94, 95, 98

character ring 47
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R(G) 47, 48, 49, 53, 56, 65, 80, 84
character table 36, 38, 54, 80, 89, 91, 93, 98
class function 31, 36, 68, 78

Cg 31

C; 69, 70

completely reducible 17, 18, 20, 28, 34, 78, 79
Z(kQG) 68, 69, 70

convolution product 67

kG 67, 68, 69, 70

compact 77, 78

C(X,Y) 76,77

ev 83, 84, 86

faithful 6, 7, 26, 94

Frobenius 64, 94

I' 55, 56, 57, 60

induction 58, 92

irreducible 10, 11, 17, 18, 23, 24, 26, 27, 30, 33, 34, 35, 36, 37, 39, 41, 42, 48, 49, 54, 56,
57, 60, 61, 62, 69, 70, 71, 72, 73, 78, 79, 80, 81, 85, 86, 88, 92, 93, 94, 95, 96, 98

W-isotypic component 28, 52

isotypical decomposition 28, 50
intertwining map 8, 9, 12, 24, 25, 47, 59
intertwines 8, 9

kX 7

IW, p, H 60, 61, 62, 63, 92, 93, 94, 95, 97

proper 10, 15
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regular representation 7, 35, 39

representation 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
30, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 68, 69, 71, 72, 73, 78, 85, 87, 88, 92, 93, 94, 95, 98
degree 5, 9, 11, 26, 27, 71, 72, 97

dimension 5, 10, 26, 32, 34, 37, 42, 43, 47, 56, 80, 86, 92, 94

direct sum 15, 17, 25

direct sum of representations 15

isomorphic 8, 9, 12, 27, 28, 30, 41, 42

isomorphism 8, 9, 11, 31, 34

simple 10, 11, 15, 18, 25, 27, 28, 30, 71

subrepresentation 10, 11, 12, 13, 15, 16, 17, 20, 22, 28, 34, 61, 80, 86
symmetric power 52

S™V 52

® 45

tensor product 43, 47

® 47, 48, 49, 95

® 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 86, 87

translation invariant 76, 77, 78

topological group 75, 76, 77, 79, 87

representation 75, 77, 78, 79, 80, 83, 84, 85, 86, 88

Ven 51,52, 53, 71, 72

trivial representation 6, 8, 32, 36, 37, 40, 43, 57, 58, 85

unitary 19, 32, 77

unique isotypical decomposition 28
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