%! TEX root = PM.tex % vim: tw=50 % 21/10/2023 10AM Given any distribution $F$, there exists a function $X$ such that $F = F_X$, i.e. $F(x) = F_X(x) = \PP(X \le x) ~\forall x$ ($\PP(\omega \in \Omega : X(\omega) \le x)$. \begin{proof} Let $\Omega = (0, 1)$ and $\PP$ the Lebesgue measure $\lambda|_{(0, 1)}$. Let $F$ be any distribution function. Then $F$ is $\uparrow$, right continuous, so we can define \[ X(\omega) = \inf\{x : \omega \le F(x)\} : (0,1) \to \RR \] Since $X$ is a measurable function, $X$ is a random variable. \[ \forall x, F_X(x) = \PP( \le x) = \PP(\omega \in \Omega : X(\omega) \le x) = \PP(\omega \in \Omega : \omega \le F(x)) = \PP((0, F(x)]) = F(x) \qedhere \] \end{proof} \begin{flashcard}[independent-rvs-defn] \begin{definition*}[Independent variables] \glsadjdefn{indep_rv}{independent}{random variable} \cloze{ A (countable) family of random variables ($X_i$, $i \in I$) is said to be \emph{independent}, if the family of \sigalgpl\ $(\sigma(X_i), i \in I)$ is independent (where recall $\sigma(X) = \sigma\{X^{-1}(A) : A \in \mathcal{E}\}$ for $X : \Omega \to (E, \mathcal{E})$). } \end{definition*} \end{flashcard} \begin{proposition*} For a sequence of random variables $(X_n, n \in \NN)$, this sequence is \emph{independent} if \[ \PP(X_1 \le x_1, \ldots, X_n \le x_n) = \PP(X_1 \le x_1) \cdots \PP(X_n \le x_n) \qquad \forall x_1, \ldots, x_n \in \RR, n \in \NN .\] \end{proposition*} \begin{proof} \es{1} \end{proof} \subsection{Rademacher functions} \textbf{Question:} Given a distribution function $F$, we know there exists a random variable $X$ corresponding to it. But given an infinite sequence of distribution functions $F_1, F_2, \ldots$ does there exist \gls{indep_rv} random variables $(X_1, X_2, \ldots)$ corresponding to them? Let $\probspace = ((0, 1), \mathcal{B}(0. 1), \lambda|_{(0, 1)})$. Any $\omega \in \Omega$ has a binary expansion: \[ \omega = 0 \cdot \ub{\omega_1}_{\half} \ub{\omega_2}_{\quarter} \ub{\omega_3}_{\frac{1}{8}} \cdots, \qquad \omega_i \in \{0 ,1\} \] If we exclude representations ending in an infinite sequence of $0s$, then the representation is unique. Define $R_n : \Omega \to \{0, 1\}$ by $R_n(\omega) = \omega_n$, i.e. $R_n = \indicator{\{\omega_n = 1\}}$ So \[ R_1 = \indicator{(1/2, 1]}, \quad R_2 = \indicator{\{\omega_2 = 1\}} = \indicator{\{\omega_1 = 0, \omega_2 = 1\}} + \indicator{\{\omega_1 = 1, \omega_2 = 1\}} = \indicator{(1/4, 1/2)} + \indicator{(3/4, 1]}, \quad R_3 = \cdots \] \glsnoundefn{rad_fun}{Rademacher function}{Rademacher functions} So $R_n$s are finite sums of indicators of intervales, hence measurable, i.e. they are random variables. They are called \emph{Rademacher functions}. \textbf{Claim:} $R_i$ are \IID\ $\Ber \left( \half \right)$. $\PP(R_n = 1) = \half = \PP(R_n = 0) ~\forall n$. \[ \PP(R_1 = x_1, R_2 = x_2, \ldots, R_n = x_n) = 2^{-n} = \PP(R_1 = x_1) \cdots \PP(R_n = x_n) \] and hence $(R_i)_{i \in \NN}$ \gls{indep_rv}. Now, choose a bijection $m : \NN^2 \to \NN$ and define $Y_{k, n} = R_{m(k, n)}$ and set $Y_n = \sum_{k = 1}^\infty 2^{-k} Y_{k, n}$ (converges on $|Y_{k, m}| \le 1$). \textbf{Claim:} $(Y_n)_n$ are \IID\ $U(0, 1)$ (i.e. $\mu_{Y_n} = \lambda|_{(0, 1)}$ and $(Y_n)$ are \gls{indep_rv}). \Gls{indep_rv} is easy ($Y_1$ is measurable function of $Y_{1, 1}, Y_{2, 1}, \ldots$, similarly $Y_2$ is a measurable function of $Y_{1, 2}, Y_{2, 2}, \ldots$, but note that these two lists are independent). Any measurable functions of \gls{indep_rv} random variables are independent (check!). The law of $Y_n$ is identified on the \pisys of intervals $\left( \frac{i}{2^m}, \frac{i + 1}{2^m} \right]$, $i = 0, 1, \ldots, 2^m - 1, m \in \NN$. And \begin{align*} \PP \left( \frac{i}{2^m} < Y_n \le \frac{i + 1}{2^m} \right) &= \PP \left( \frac{i}{2^m} < \sum_{K = 1}^\infty 2^{-k} Y_{k, n} \le \frac{i + 1}{2^m} \right) \\ &= \PP \left( Y_{1, n} = y_1, \ldots, Y_{m, n} = y_m \right) &&\text{where $\frac{i}{2^m} = 0 \cdot y_1 y_2 \cdots y_m$} \\ &= \prod_{i = 1}^m \PP (Y_{i, n} = y_i) \\ &= 2^{-m} \\ &= \lambda \left( \frac{i}{2^m}, \frac{i + 1}{2^m} \right] \end{align*} Hence $\mu_{Y_n}$ is $\lambda|_{(0, 1)}$, i.e. $Y_1$ are \IID\ $U(0, 1)$. Then, as before, set \[ G_n(x) = F_n^-(x) = \inf\{y : x \le F_n(y)\} \] then $G_n$'s are Borel functions. Set $X_n = G_n(Y_n)$, $n = 1, 2, \ldots$. Then as before $F_{X_n} = F_n$ and $(X_n)$ are \gls{indep_rv} (as $(Y_n)_N$ are \gls{indep_rv}). \subsection{Convergence of Random Variables} \begin{flashcard}[almost-everywhere-defn] \begin{definition*}[almost everywhere] \glspropdefn{al_ev}{almost everywhere}{property} \glspropdefn{al_surely}{almost surely}{event} \cloze{ $(E, \mathcal{E}, \mu)$ be a measure space. Let $A \in \mathcal{E}$ be defined by some property. We say the property holds almost everywhere (a.e / $\mu$.a.e) if $\mu(A^c) = 0$. If $\mu$ is a probability measure, we say almost surely (a.s) if $\PP(A^c) = 0$, i.e. $\PP(A) = 1$ (w.p.1). } \end{definition*} \end{flashcard} \vspace{-1em} Thus if $(f_n)$, $f$, $(E, \mathcal{E}, \mu) \to (\RR, \mathcal{B})$ measurable, we say \begin{itemize} \item $f_n \to f$ \gls{al_ev} if \[ \mu(\{x \in E : f_n(x) \not\to f(x)\}) = 0 \] for $\PP$, \gls{al_surely} $\PP(\{\omega \in \Omega : X_n(\omega) \to X(\omega)\}) = 1$. \item $f_n \to f$ in ($\mu$-)measure if $\forall \eps > 0$, \[ \mu(\{x \in E : |f_n(x) - f(x)| > \eps\}) \to 0 \] as $n \to \infty$, and in ($\PP$)-probability if $\PP(|X_n - X| > \eps) \to 0$. \end{itemize} \begin{theorem*} Let $(f_n)$ be a sequence of measurable functions. Then if $\mu(E) < \infty$, then $f_n \to 0$ \gls{al_ev} $\implies f_n \to 0$ in $\mu$-measure. ($f_n = \indicator{(n, \infty)}$ and the Lebesgue measure then $f_n \to 0$ \gls{al_ev} but $\mu(|f_n| > \eps) = \infty ~\forall n$). \end{theorem*} \begin{proof} Fix $\eps > 0$. Suppose $f_n \to 0$ \gls{al_ev}. Then \begin{align*} \mu(|f_n| \le \eps) \ge \mu \left( \bigcap_{m = 1}^\infty \{|f_m| \le \eps\}\right) \\ &\uparrow \mu (|f_n| \le \text{ eventually}) \\ &\ge \mu(f_n \stackrel{n \to \infty}{\longrightarrow} 0) \\ &= \mu(E) \\ &<\infty \end{align*} \[ A_n = \bigcap_{m = n}^\infty \{|f_m| \le \eps\} \uparrow \bigcup_{n = 1}^\infty \bigcap_{m = n}^\infty \{|f_m| \le \eps\} \] Hence \[ \lim_{n \to \infty} \mu(|f_n| \le \eps) = \mu(E) \] So, $\lim_{n \to \infty} \mu(|f_n| > \eps) = 0$. \end{proof}