%! TEX root = PM.tex % vim: tw=50 % 19/10/2023 10AM \begin{flashcard}[image-measure] \begin{definition*}[image / measure] \cloze{ Let $(E, \mathcal{E})$ and $(G, \mathcal{G})$ be 2 measurable spaces, $f : E \to G$ measurable, and $\mu$ a measure on $(E, \mathcal{E})$. Then $\mu$ induces an \emph{image / pull-forward measure} $\mathcal{V}$ on $\mathcal{G}$ given by $\mathcal{V} = \mu \circ f^{-1}$, i.e. $\mathcal{V}(A) = \mu(f^{-1}(A)) ~\forall A \in \mathcal{G}$. This is well-defined and $\mathcal{V}$ is a measure (\es{1}). } \end{definition*} \end{flashcard} \begin{note*} Starting from Lebesgue measure, we can get all probability measures (Radon measures) in this way. \end{note*} \begin{lemma*} Let $g : \RR \to \RR$ be non-constant, right continuous, and increasing. Set $G(\pm \infty) = \lim_{x \to \pm \infty} g(x)$ and $I = (g(-\infty), g(\infty))$. Define $f : I \to \RR$ by $f(x) = \inf\{y \in \RR : g(y) \ge x\}$. Then $f$ is left continuous, increasing and $\forall x \in I, y \in \RR$, \[ f(x) \le y \iff x \le g(y) \qquad (f(x) > y \iff x > g(y)) \] $f$ is called a generalised inverse of $g$ (if $I = (0, 1)$ then $f$ is the quantile function). \end{lemma*} \begin{center} \includegraphics[width=0.6\linewidth] {images/4a2277de6e6111ee.png} \end{center} \begin{proof} Fix $x \in I$. Define $J_x = \{y \in \RR : g(y) \ge x\}$. Then $J_x$ is non-empty and bounded below and hence $f(x) \in \RR$. Since $g$ if increasing, if $y \in J_x$ and $y' \ge y$, then $g(y') \ge g(y) \ge x$, i.e. $y' \in J_x$. Since $g$ is right continuous, if $y_n \in J_x$, $y_n \downarrow y$, then $g(y) = \lim_{n \to \infty} g(y_n) \ge x$, i.e. $y \in J_x$. So $J_x = [f(x), \infty)$. So $x \le g(y) \iff y \in J_x \iff f(x) \le y$. If $x \le x'$, we have $J_x \supseteq J_{x'}$ (as $y \in J_x \Rightarrow y \in J_{x'}$, as $y \in J_x' \iff g(y) \ge x' \implies g(y) \ge x \implies y \in J_x$). So $[f(x), \infty) \supseteq [f(x'), \infty)$, so $f(x) \le f(x')$, i.e. $f$ is increasing. To show $f$ is left continuous: Let $x_n \uparrow x$. Then $J_x = \bigcap_n J_{x_n}$, i.e. $[f(x), \infty) = \bigcap_n [f(x_n), \infty)$, so $f(x_n) \to f(x)$. \end{proof} \begin{theorem*} Let $g : \RR \to \RR$ as in the lemma. Then there exists a unique Radon measure $\mu_g$ on $\RR$ such that $\forall a, b \in \RR$ with $a < b$, \[ \mu_g((a, b]) = g(b) - g(a) \] Also, every Radon measure can be obtained in this way. \end{theorem*} \begin{remark*} The measure $\mu_g$ is called the Lebesgre-Stieljtes measure associated with $g$. \end{remark*} \begin{proof} Define $I, f$ as in the lemma, and let $\lambda$ be the Lebesgue measure on $I$. $f$ is Borel measurable since \[ f^{-1}((-\infty, z]) = \{x \in I : f(x) \le z\} = \{x \in I : x \le g(z)\} = (g(-\infty), g(z)] \in \mathcal{B} \] and $\{(-\infty, z] : z \in \RR\}$ generate $\mathcal{B}$, hence $f$ is measurable. Thus, the induced measure $\mu_g = \lambda \circ f^{-1}$ exists on $\mathcal{B}$, where $\mu_g(A) = \lambda(f^{-1}(A))$. Then \begin{align*} \mu_g((a, b]) &= \lambda(f^{-1}(a, b]) \\ &= \lambda(\{x : f(x) > a, f(x) \le b\}) \\ &= \lambda(\{x : x > g(a), x \le g(b)\}) \\ &= \lambda((g(a), g(b)]) \\ &= g(b) - g(a) \end{align*} By the \nameref{uniqueness_thm} for $\sigma$-finite measures, $\mu_g$ is uniquely determined. Conversely, if $\mathcal{V}$ is any Radon measure on $\RR$, define \[ g : \RR \to \RR \quad \text{as} \quad g(y) = \begin{cases} \mathcal{V}((0, y]) & y \ge 0 \\ -\mathcal{V}((y, 0]) & y < 0 \end{cases} \] $\mathcal{V}$ Radon implies $g : \RR \to \RR$. Easy to check $g$ is right continuous ($y \ge 0$, $y_n \downarrow y$, then $(0, y_n] \downarrow (0, y]$ and then $\mathcal{V}((0, y_n]) \downarrow \mathcal{V}((0, y])$ by countably additivity, and for $y < 0$, if $y_n \downarrow y$ then use a similar argument). So $g$ is increasing. Lastly, \[ \mathcal{V}((a, b]) = g(b) - g(a) \] (check cases $0 \in (a, b)$ and $0 \not\in (a, b$). \end{proof} \begin{example*} Fix $x \in \RR$. Take $g = \mathbbm{1}_{[x, \infty)}$ \begin{center} \includegraphics[width=0.6\linewidth] {images/0f1da9c06e6511ee.png} \end{center} Then $\mu_g = \delta_x$: Dirac measure at $x$, i.e. \[ \delta_x(A) = \begin{cases} 1 & x \in A \\ 0 & x \not\in A \end{cases} \forall A \in \mathcal{B} \] \end{example*} \subsection{Random Variables} \begin{flashcard}[random-variable-defn] \begin{definition*}[random variable] \cloze{ Let $(\Omega, \mathcal{F}, \PP)$ be a probability space and $(E, \mathcal{E})$ a measurable space. Let $X : \Omega \to E$ a measurable function. Then $X$ is called a \emph{random variable} in $E$. } \end{definition*} \end{flashcard} \vspace{-1em} $X$ models a ``random'' outcome of an experiment. For example $\Omega = \{\text{H}, \text{T}\}$, $X : \text{\# heads} : \Omega \to \{0, 1\}$. \begin{center} \includegraphics[width=0.6\linewidth] {images/7216ff186e6511ee.png} \end{center} \begin{flashcard}[distribution-func-defn] \begin{definition*}[distribution] \cloze{The image measure $\mu_X = \PP \circ X^{-1}$ is called the \emph{law} or \emph{distribution} of $X$. It is a measure on $(E, \mathcal{E})$. If $E = \RR$, $\mu_X$ is uniquely determined by its values on the $\pi$-system $\{(-\infty, x] : x \in \RR\}$ given by \[ F_X(x) \defeq \mu_X((-\infty, x]) = \PP \circ X^{-1}((-\infty, x]) = \PP(\omega \in \Omega : X(\omega) \le x) = \PP(X \le x) .\] The function $F_X$ is called the distribution function of $X$, because it characterises the distribution of $X$.} \end{definition*} \end{flashcard} \vspace{-1em} By properties of probability measure: \begin{enumerate}[(1)] \item $F_X$ is increasing. \item $F_X$ is right continuous ($x_n \downarrow x \implies (-\infty, x_n] \downarrow (-\infty, x]$ hence countability additivity of $\PP \circ X^{-1}$) \item $F_X(-\infty) = \lim_{x \to -\infty} F_X(x) = 0$, $F_X(\infty = \lim_{x \to \infty} F(x) = 1$. \end{enumerate} Any $F : \RR \to [0, 1]$ satisfying all these properties is called a \emph{distribution function}.