%! TEX root = PM.tex % vim: tw=50 % 17/10/2023 10AM \begin{example*} \[ \{\text{$A_n$ infinite often}\} = \{\text{infinitely many of the $\{A_n\}$ occur}\} = \bigcap_{n = 1}^\infty \bigcup_{m \ge n} A_m \] So if $A_n = \{\text{$H$ in the $n$-th toss}\}$, then \[ \{\text{$A_n$ infinitely often}\} = \{\text{infinitely many heads}\} \] \end{example*} \begin{remark*} The lemma holds for any measure $\mu$ (not just probability measures). \end{remark*} \begin{flashcard}[borel-cantelli-lemma-2] \begin{lemma*}[Borel Cantelli Lemma 2] \refstepcounter{customlemma} \label{borel_cantelli_2} \cloze{ Assume the events $(A_n)$ are independent. Then if $\sum_n \PP(A_n) = \infty$, then $\PP(\text{$A_n$ infinitely often}) = 1$. } \end{lemma*} \begin{proof} \cloze{ We will use the inequality $1 - a \le e^{-a}$ for all $a \ge 0$. Now, $(A_n)_{n \in \NN}$ are independent so $(A_n^c)_{n \in \NN}$ are independent. So, for all $n$ and $N \ge n$, \[ 0 \le \PP \left( \bigcap_{m = n}^N A_m^c \right) = \prod_{m = n}^N \PP (A_m^c) = \prod_{m = n}^N (1 - \PP(A_m)) \le e^{-\sum_{m = n}^N \PP(A_m)} \] Taking $N \to \infty$, \[ 0 \le \PP \left( \bigcap_{m = n}^\infty A_m^c \right) \le \lim_{N \to \infty} \PP \left( \bigcap_{m = n}^N A_m^c \right) \le \lim_{N \to \infty} e^{-\sum_{m = n}^N \PP(A_m)} = \lim_{n \to \infty} e^{-\sum_{m = n}^\infty \PP(A_m)} = 0 \] So, \[ \PP \left( \bigcap_{m = n}^\infty A_m^c \right) = 0 \] i.e. \[ \label{6_53_star} \PP \left( \bigcup_{m = n}^\infty A_m \right) = 1 \qquad \forall n \tag{$*$} \] $\bigcup_{m = n}^\infty A_m \eqdef B_n$. Then \[ B_n \downarrow \bigcap_n B_n = \bigcap_n \bigcup_{m \ge n} A_m = \{\text{$A_n$ infinitely often}\} .\] So, as $\PP(B_n) = 1$ for all $n$ (by \eqref{6_53_star}), so $\PP(\text{$A_n$ infinitely often}) = \lim_{n \to \infty} \PP(B_n) = 1$. } \end{proof} \end{flashcard} \begin{remark*} If $(A_n)_{n \in \NN}$ independent, then $\{\text{$A_n$ infinitely often}\}$ is a $0/1$ event. For all ``tail events'', the probability is $0/1$ (Kolmogorov $0-1$ law, will prove later). \end{remark*} \newpage \section{Measurable Functions} \begin{flashcard}[measurable-func-defn] \begin{definition*}[measurable function] \cloze{ Let $(E, \mathcal{E})$ and $(G, \mathcal{G})$ be 2 measurable functions. A map $f : E \to G$ is called \emph{measurable} if $f^{-1}(A) \in \mathcal{E} ~\forall A \in \mathcal{G}$, where $f^{-1}(A)$ is the pre-image of $A$ under $f$, i.e. \[ f^{-1}(A) = \{x \in E : f(a) \in A\} .\] When $(G, \mathcal{G}) = (\RR, \mathcal{B}(\RR))$, we simply say $f$ is measurable. If $E$ is a topological space and $\mathcal{E} = \mathcal{B}(E)$, then $f$ is called Borel. } \end{definition*} \end{flashcard} \begin{remark*} Preimages preserve set operations: \[ f^{-1} \left( \bigcup_i A_i \right) = \bigcup_i f^{-1}(A_i) \qquad \text{and} \qquad f^{-1} (G \setminus A) = E \setminus f^{-1}(A) .\] (Checking these is an exercise). So, $\{f^{-1}(A) : A \in \mathcal{G}\}$ is a $\sigma$-algebra on $E$ and $\{A \subset G : f^{-1(A)} \in \mathcal{E}\}$ is a $\sigma$-algebra on $G$. If $\mathcal{G} = \sigma(\mathcal{A})$ and $f^{-1}(A) \in \mathcal{E} ~\forall A \in \mathcal{A}$, then $\{A \subset G : f^{-1}(A) \in \mathcal{E}\}$ is a $\sigma$-algebra containing $\mathcal{A}$, hence it contains $\sigma(\mathcal{A}) = \mathcal{G}$. So $f$ is measurable. In particular, when $G = \RR$, $\mathcal{G} = \mathcal{B}$, then $\mathcal{B} = \sigma(\mathcal{A})$ where $\mathcal{A} = \{-\infty, y] : y \in \RR\}$, so $f$ is Borel measurable if and only if $\{x \in E : f(x) \le y\} \in \mathcal{E} ~\forall y \in \RR$. If $E$ is a topological space, $f : E \to \RR$ continuous, then for $\mathcal{A} = \{U : \text{$U$ open}\}$, $f^{-1}(E) \in \mathcal{E}$ (as $f^{-1}(U)$ is open). So $f$ is Borel-measurable. \end{remark*} \begin{example*} For $A \subseteq E$, the indicator function \[ \mathbbm{1}_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \not\in A \end{cases} \] is measurable if and only if $A \in \mathcal{E}$. Composition of measurable functions is measurable (easy exercise). For a family of functions $f_i : E \to G$, $i \in I$, we can make all $(f_i)$ measurable with respect to the $\sigma$-algebra \[ \mathcal{E} = \sigma(f_i^{-1}(A) : A \in \mathcal{G}, i \in I) .\] $\mathcal{E}$ is called the $\sigma$-algebra generated by $\{f_i\}_{i \in I}$. \end{example*} \begin{proposition*} If $f_1, f_2, \ldots$ are measurable $\RR$-valued, then \[ f_1 + f_2, \quad f_1 f_2, \quad \inf_n f_n, \quad \sup_n f_n, \quad \liminf_n f_n, \quad \limsup_n f_n \] are all measurable. \end{proposition*} \begin{proof} See \es{1}. \end{proof} \begin{flashcard}[] \begin{theorem*}[Monotone Class Theorem] \refstepcounter{customtheorem} \label{monotone_class_thm} \cloze{ Let $(E, \mathcal{E})$ be a measurable space and $\mathcal{A}$ a $\pi$-system generating $\mathcal{E}$. Let $\mathcal{V}$ be a vector space of bounded functions $f : E \to \RR$ such that \begin{enumerate}[(1)] \item $1 \in \mathcal{V}$ and $\mathbbm{1}_A \in \mathcal{V} ~\forall A \in \mathcal{A}$ \item If $f_n \in \mathcal{V} ~\forall n$ and $f$ bounded with $0 \le f_n \uparrow f$, then $f \in \mathcal{V}$. \end{enumerate} Then $\mathcal{V}$ contains all bounded measurable functions. } \end{theorem*} \begin{proof} \cloze{Let $\mathcal{D} = \{A \in \mathcal{E} : \mathbbm{1}_A \in \mathcal{V}\}$. Then $\mathcal{D}$ is a $d$-system. This is because $\mathbbm{1} = \mathbbm{1}_E \in D$, $\mathbbm{1}_{B \setminus A} = \mathbbm{1}_B - \mathbbm{A} \in \mathcal{V}$, if $A \subseteq B$, as $\mathcal{V}$ is a vector space. If $A_n \in \mathcal{D}$, i.e. $\mathbbm{1}_{A_n} \in \mathcal{V}$, $A_n \uparrow A$, then $\mathbbm{1}_{A_n} \uparrow \mathbbm{1}_A$ so by (2), $\mathbbm{1}_A \in \mathcal{V}$, so $A \in \mathcal{D}$. It contains the $\pi$-system $\mathcal{A}$ so by \nameref{dynkins_lemma}, contains $\sigma(\mathcal{A}) = \mathcal{E}$, so $\mathcal{D} = \mathcal{E}$, i.e. $\mathbbm{1}_A \in \mathcal{V} ~\forall A \in \mathcal{E}$. Since $\mathcal{V}$ is a vector space, it contains all finite linear combinations of indicators of measurable sets. So, \[ f_n = 2^{-n} \left\lfloor 2^n f \right\rfloor \in \mathcal{V} .\] Then \begin{align*} f_n(x) &= 2^{-n} \left\lfloor 2^n f(x) \right\rfloor \\ &= 2^{-n} \sum_{j = 0}^n j \mathbbm{1}_{\{2^n f(x) \in [j, j + 1)\}} \\ &= 2^{-n} \sum_{j = 0}^{K_n} j \mathbbm{1}_{\{f^{-1}([j / 2^n, (j + 1)/2^n))\}} \end{align*} for some finite $K_n$ since $f$ is bounded. Then $f_n \le f \le f_n + 2^{-n}$. So $|f_n - f| \to 0$ as $n \to \infty$ and $f_n \uparrow f$. So $0 \le f_n \uparrow f, f_n \in \mathcal{V}$, and $f$ is bounded non-negative. So $f \in \mathcal{V}$ by (2). Finally, for any $f$ bounded measurable, $f = f^+ - f^-$, where $f^+ = \max(f, 0)$, $f^- = \max(-f, 0)$. $f^+$, $f^-$ are bounded non-negative measurable and $\in \mathcal{V}$. So since $\mathcal{V}$ is a vector space, $f \in \mathcal{V}$.} \end{proof} \end{flashcard}