%! TEX root = PM.tex % vim: tw=50 % 14/10/2023 10AM We now show that $\mathcal{B} \subsetneq \mathcal{P}(\RR)$ (in fact, $\mathcal{M}_{\text{Leb}} \subsetneq \mathcal{P}(\RR)$). Vitali (1905) first showed such a set exists. Consider $E = [0, 1)$ with addition modulo $1$. Then Lebesgue measure is invariant under this operation, i.e. \[ \lambda(B) = \lambda(B + x) \] where adding is done modulo $1$. \textbf{Question:} If $B \in \mathcal{B}$, why is $B + x \in \mathcal{B}$? $\mathcal{G} = \{B \in \mathcal{B} : B + x \in \mathcal{B}\}$. For $x, y \in [0, 1)$, define the equivalence relation $x \sim y$ if $x - y \in \QQ \cap [0, 1)$ ($\QQ \cap [0,1)$ a subgroup on $[0, 1)$). Using the Axiom of Choice (uncountable version), we can select a representative from each equivalence class and form the set $S$. We will show $S \not\in \mathcal{B}$. The sets $(S + q)_{q \in \QQ \cap [0, 1)}$ are all disjoint and their union is $[0, 1)$, i.e. \[ [0, 1) = \bigcup_{q \in \QQ \cap [0, 1)} (S + q) \] Now, if $S$ were a Borel set, so would $S + q$ be, and by translation invariance of $\lambda$ and countable additivity of $\lambda$, \[ 1 = \lambda([0, 1]) = \sum_{q \in \QQ \cap [0, 1)} \lambda(S + q) = \sum_{q \in \QQ \cap [0, 1)} \lambda(S) \] giving a contradiction. So $S \not\in \mathcal{B}$. \begin{remark*} Extend this proof to show that $S \not\in \mathcal{M}_{\text{Leb}}$. \end{remark*} \begin{theorem*}[Banach-Kuratowski 1929] Assuming the continuum Hypothesis, there does not exist a measure $\mu$ on $\mathcal{P}([0, 1])$ such that \[ \mu([0, 1]) = 1 \qquad \text{and} \qquad \mu(\{x\}) = 0 ~\forall x \] \end{theorem*} \begin{proof} Dudley (appendix). \end{proof} Henceforth, whenever we are on a metric space $E$, we will work with $\mathcal{B}(E)$, which will be perfectly satisfactory. \subsection{Probability Measures} We usually use $(\Omega, \mathcal{F}, \PP)$ to denote a probability space. \begin{itemize} \item $\Omega$ is the set of possible outcomes of the experiment / sample space. \item $\mathcal{F}$ is the set of events. \item $\PP(\Omega) = 1$, $\PP(A)$ for $A \in \mathcal{F}$ is the probability that the event occurs. \end{itemize} Kolmogorov (1933) set the axioms of probability theory. Axioms: \begin{enumerate}[(1)] \item $\PP(\Omega) = 1$, $\PP(\emptyset) = 0$. \item $\PP(E) \ge 0 ~\forall E \in \mathcal{F}$. \item $\PP \left( \bigcup_n A_n \right) = \sum_n \PP(A_n)$ for all $A_n \in \mathcal{F}$ disjoint, i.e. $\PP$ is a measure. \end{enumerate} \begin{remark*} \phantom{} \begin{itemize} \item $\PP \left( \bigcup_n A_n \right) \le \sum_n \PP(A_n)$. \item $A_n \uparrow A \implies \PP(A_n) \uparrow \PP(A)$. \item $A_n \downarrow A \implies \PP(A_n) \downarrow \PP(A)$. \end{itemize} \end{remark*} \begin{flashcard}[independent-sigma-algebras-defn] \begin{definition*}[Independence] \glsadjdefn{indep_event}{independent}{events} \glsadjdefn{indep_sigma}{independent}{$\sigma$-algebras} \cloze{ We say $(A_i, i \in I)$, $A_i \in \mathcal{F}$, are \emph{independent}, if for all finite sets $J \subseteq I$, we have \[ \PP \left( \bigcap_{j \in J} A_j \right) = \prod_{j \in J} \PP(A_j) \] Say that the $\sigma$-algebras $(\mathcal{A}_i, i \in I)$, $\mathcal{A}_i \in \mathcal{F}$ for all $i$, are \emph{independent}, if $(A_i, i \in I)$ is independent for all $A_i \in \mathcal{A}_i$. } \end{definition*} \end{flashcard} \begin{theorem*} Let $\mathcal{A}_1$, $\mathcal{A}_2$ be $\pi$-systems contained in $\mathcal{F}$ such that \[ \PP(A_1 \cap A_2) = \PP(A_1) \PP(A_2) \qquad \forall A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2 \] \end{theorem*} \begin{proof} Fix $A_1 \in \mathcal{A}_1$, and define for $A \in \sigma(\mathcal{A}_2)$: \[ \mu(A) = \PP(A_1 \cap A), \qquad \nu(A) = \PP(A_1) \PP(A) .\] Then $\mu$ and $\nu$ are finite measures, and they agree on the $\pi$-system $\mathcal{A}_2$. Hence, by \nameref{uniqueness_thm}, \[ \label{5_133_star} \mu(A) = \nu(A) ~\forall A \in \sigma(\mathcal{A}_2) \tag{$*$} \] Repeat the same argument, now by fixing $A_2 \in \sigma(\mathcal{A}_2)$. \[ \mu'(A) = \PP(A \cap A_2), \qquad \nu'(A) = \PP(A) \PP(A_2) \qquad \forall A \in \sigma(\mathcal{A}_1) \] By \eqref{5_133_star}, $\mu' = \nu'$ on $\mathcal{A}_1$, hence by \nameref{uniqueness_thm}, $\mu' = \nu'$ on $\sigma(\mathcal{A}_1)$. \end{proof} \subsection{Borel-Cantelli Lemmas} Given a sequence of events $(A_n, n \in \NN)$, we may ask for the probability that infinitely many of them occur. \begin{flashcard}[liminf-limsup-defn] \begin{definition*} \glsnoundefn{io}{i.o.}{N/A} \glsnoundefn{eventually}{eventually}{N/A} For $A_n \in \mathcal{F} ~\forall n$, define \[ \limsup A_n = \cloze{\bigcap_{n = 1}^\infty \bigcup_{m \ge n} A_n = \{\text{$A_n$ infinitely often}\}} \] \[ \liminf A_n = \cloze{\bigcup_{n = 1}^\infty \bigcap_{m \ge n} A_n = \{\text{$A_n$ eventually}\}} \] \end{definition*} \end{flashcard} \setcounter{customlemma}{0} \begin{lemma*}[Borel-Cantelli Lemma 1] \refstepcounter{customlemma} \label{borel_cantelli_1} If $\sum \PP(A_n) < \infty$, then $\PP(\text{$A_n$ infinitely often}) = 0$. \end{lemma*} \begin{proof} Fix any $n \in \NN$. Then \[ 0 \le \PP(\text{$A_n$ infinitely often}) \le \PP \left( \bigcup_{m \ge n} A_m \right) \le \sum_{m \ge n} \PP(A_m) \] Take limit as $n \to \infty$. \end{proof}