%! TEX root = PM.tex % vim: tw=50 % 12/10/2023 10AM Goal: one of the main goals of this course is to construct a Borel measure $\mu$ on $\mathcal{B}(\RR^d)$ such that such that \[ \mu \left( \prod_{i = 1}^d (a_i, b_i) \right) = \prod_{i = 1}^d (b_i - a_i) \qquad a_i < b_i \] corresponding to the usual notion of volume of rectangles. This measure will be called the \emph{Lebesgue measure} after H. Lebesgue (1902). We'll first look at $d = 1$. \begin{flashcard}[borel-measure-1d] \begin{theorem*} There exists a unique Borel measure $\mu$ on $\RR$ such that $\forall a, b \in \RR$ \cloze{with $a < b$, $\mu((a, b]) = b - a (\dag)$}. $\mu$ is called \cloze{the \fcemph{Lebesgue measure} on $\RR$.} \end{theorem*} \end{flashcard} \begin{proof} \textbf{Existence:} Consider the ring $\mathcal{A}$ of finite unions of disjoint intervals of the form \[ A = (a_1, b_1] \cup (a_2, b_2] \cup \cdots \cup (a_n, b_n] \qquad a_1 \le b_1 \le a_2 \le b_2 \le \cdots \le a_n \le b_n \] Note that $\sigma(\mathcal{A}) = \mathcal{B}$ (Example Sheet) (as all open intervals in $\sigma(\mathcal{A})$ and open intervals generate open sets). Define for such $A \in \mathcal{A}$, \[ \mu(A) = \sum_{i = 1}^n (b_i - a_i) \] This agrees with $(\dag)$ for $(a, b]$. This is additive and well-defined (check). (Note that this is important since representations aren't unique, for example $(0, 2] = (0, 1] \cup (1, 2]$). So, the existence of $\mu$ on $\mathcal{B}$ follows from Caratheodory's theorem if we can show that $\mu$ is \fcemph{countably additive}. \fcscrap{ \begin{remark*} (Example Sheet) $\mu$ a finitely additive set function on a ring $\mathcal{A}$. Then $\mu$ is countably additive iff \begin{itemize} \item $A_n \uparrow A$, $A_n \in \mathcal{A} \implies \mu(A_n) \uparrow \mu(A)$. \item In addition, if $\mu$ is finite and $A_n \downarrow A$, $(A_n), A \in \mathcal{A}$, then $\mu(A_n) \downarrow \mu(A)$. \end{itemize} $A_n = [n, \infty)$, $A_n \downarrow \emptyset$. \end{remark*} } So, by example sheet, showing $\mu$ is countably additive on $\mathcal{A}$ is equivalent to showing the following: If $A_n \in \mathcal{A}$, $A_n \downarrow \emptyset$, then $\mu(A_n) \downarrow 0$, $A_1 \supseteq A_2 \supseteq \cdots$. ($\mu$ finitely additive on a ring $\mathcal{A}$. THen $\mu$ is countably additive iff $A_n \downarrow \emptyset$, $\mu(A_1) < \infty$ implies $\mu(A_n) \downarrow 0$). We shall prove this by contradiction. Suppose $\exists B_n \in \mathcal{A}$, $B_n \downarrow \emptyset$, but for all $n$, $\mu(B_n) \ge 2\eps > 0$ for some $\eps > 0$. For each $n$, $B_n$ can be approximated from within by $C_n \in \mathcal{A}$ such that $\ol{C_n} \subseteq B_n$ and $\mu(B_n \setminus C_n) \le \eps / 2^n$. For example, \begin{align*} B_n &= (a_1, b_1] \cup (a_2, b_2] \\ C_n &= \left(a_1 + \frac{\eps}{2 \cdot 2^n}, b_1 \right] \cup \left( a_2 + \frac{\eps}{2 \cdot 2^n}, b_2 \right] \end{align*} Then \begin{align*} \mu (b_n \setminus C_1 \cap C_2 \cap \cdots \cap C_n ) &\le \mu \left( \bigcup_{i = 1}^n (B_i \setminus C_i \right) \\ &\le \sum_{i = 1}^n \mu(B_i \setminus C_i) \\ &\le \sum_{i = 1}^n \frac{\eps}{2^i} \\ &= \eps \end{align*} Since $\mu(B_n) \ge 2\eps$ and $\mu(B_n \setminus (C_1 \cap \cdots \cap C_n)) \le \eps$, \[ \implies \mu(C_1 \cap \cdots \cap C_n) \ge \eps \implies C_1 \cap \cdots \cap C_n \neq \emptyset \] So $K_n = \ol{C_1} \cap \cdots \cap \ol{C_n} \neq \emptyset$. $(K_n)$ is a sequence of decreasing bounded closed sets, each non-empty, so $\bigcap_n K_n \neq \emptyset$ (by completeness of $\RR$). But then $\emptyset \neq \bigcap_n K_n \subseteq \bigcap_n B_n = \emptyset$, which is a contradiction. \textbf{Uniqueness:} For uniqueness, suppose $\mu$, $\lambda$ are measures on $\mathcal{B}$ such that $(\dag)$ holds for sets of the form $(a, b]$. Define the truncated measures, for $A \in \mathcal{B}$, \[ \mu_n(A) = \mu(A \cap (n, n + 1]) \qquad \text{and} \qquad \lambda_n(A = \lambda(A \cap (n, n + 1]) \] Then $\mu_n$ and $\lambda_n$ are probability measures on $\mathcal{B}$ and $\mu_n = \lambda_n$ on the $\pi$-system of intervals of the form $(a, b]$, $a < b$, which generates $\mathcal{B}$. So by \nameref{uniqueness_thm}, $\lambda_n = \mu_n$ on $\mathcal{B}$. Hence for all $A \in \mathcal{B}$, \begin{align*} \mu(A) &= \mu \left( \bigcup_n (A \cap (n, n + 1]) \right) \\ &= \sum_n \mu(A \cap (n, n + 1]) \\ &= \sum_n \mu_n(A) \\ &= \sum_n \lambda_n(A) \\ &= \lambda(A) \qedhere \end{align*} \end{proof} \begin{remark*} \phantom{} \begin{enumerate} \item A set $B \in \mathcal{B}$ is called a Lebesgue ($\lambda$) null set if $\lambda(B) = 0$. Any singleton set \[ \{x\} = \bigcap_n \left( x - \frac{1}{n}, x \right] \] is a Lebesgue-null set since $\lambda(\{x\}) = \lim_{n \to \infty} \lambda((x - 1/n, x]) = \lim_{n \to \infty} 1/n = 0$. In particular, $\lambda((a, b)) = \lambda([a, b]) = \lambda([a, b)) = b - a$. Any countable set $Q$ satisfies $\lambda(Q) = 0$. There exist uncountable sets $C$ with $\lambda(C) = 0$ (for example the Cantor set). \item Lebesgue measure is translation invariant: for $x \in \RR$, and $B \in \mathcal{B}$, define $B + x = \{b + x : b \in B\}$, and define $\lambda_x(B) = \lambda(B + x)$. Then $\lambda_x((a, b]) = \lambda((a, b] + x) = \lambda((a + x, b + x]) = b - a = \lambda((a, b])$. So $\lambda_x = \lambda$ on the $\pi$-system of intervals, and hence $\lambda_x = \lambda$ on $\mathcal{B}$. Question: Is the Lebesgue measure the only such translation invariant measure on $\mathcal{B}$? \item Lebesgue-measurable sets: Caratheodory extends $\lambda$ from $\mathcal{A}$ to not just $\sigma(A) = \mathcal{B}$, but actually to $\mathcal{M}$, the set of outer measurable sets. $\mathcal{M} \supseteq \mathcal{B}$, but how large is $\mathcal{M}$? \[ \mathcal{M} = \{A \cap N : A \in \mathcal{B}, N \subseteq B, B \in \mathcal{B}, \lambda(B) = 0\} \] (Lebesgue $\sigma$-algebra) \end{enumerate} \end{remark*}