%! TEX root = PM.tex % vim: tw=50 % 10/10/2023 10AM To address the uniqueness of extension, we introduce further subclasses of $\mathcal{P}(E)$. Let $\mathcal{A}$ be a collection of subsets of $E$. \begin{flashcard}[pi-system-defn] \begin{definition*}[$\pi$-system] \cloze{$\mathcal{A}$ is called a \emph{$\pi$-system} if $\emptyset \in \mathcal{A}$ and $\forall A, B \in \mathcal{A}$, $A \cap B \in \mathcal{A}$.} \end{definition*} \end{flashcard} \begin{flashcard}[d-system-defn] \begin{definition*}[$d$-system] \cloze{$\mathcal{A}$ is called a \emph{$d$-system} (for Dynkin, alternatively called a \emph{$\lambda$-system}) if \begin{itemize} \item $E \in \mathcal{A}$ \item $A, B \in \mathcal{A}$ and $A \subseteq B$, then $B \setminus A \in \mathcal{A}$ \item $\{A_n\} \in \mathcal{A}$ and $A_n \uparrow A = \bigcup_n A_n$, then $A \in \mathcal{A}$ ($A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$) \end{itemize} } \end{definition*} \end{flashcard} \vspace{-1em} Equivalently, $\mathcal{A}$ is a $d$-system if \begin{itemize} \item $\emptyset \in \mathcal{A}$ \item $A \in \mathcal{A} \implies A^c \in \mathcal{A}$ \item $\{A_n\} \in \mathcal{A}$ and $A_n$'s \emph{disjoint}, then $\bigcup_n A_n \in \mathcal{A}$ \end{itemize} Proof is on Example Sheet 1. \textbf{Fact (Example Sheet 1):} A $\pi$-system $\mathcal{A}$ which is also a $d$-system is actually a $\sigma$-algebra. \begin{flashcard}[dynkins-lemma] \begin{lemma*}[Dynkin's lemma] \refstepcounter{customlemma} \label{dynkins_lemma} \cloze{Let $\mathcal{A}$ be a $\pi$-system. Then any $d$-system that contains $\mathcal{A}$, contains also $\sigma(\mathcal{A})$.} \end{lemma*} \end{flashcard} \begin{flashcard}[dynkin-proof] \begin{proof} \cloze{ Define \[ \mathcal{D} = \bigcap_{\substack{ \text{$\ol{\mathcal{D}}$ a $d$-system} \\ \text{$\ol{\mathcal{D}} \supseteq \mathcal{A}$} }} \ol{\mathcal{D}} \] Then $\mathcal{D}$ is itself a $d$-system (proof same as in $\sigma(\mathcal{A})$). We will show that $\mathcal{D}$ is also a $\pi$-system, then we are done. To achieve this, define \[ \mathcal{D}' = \{B \in \mathcal{D} : B \cap A \in \mathcal{D} ~\forall A \in \mathcal{A}\} \] Then $\mathcal{A} \subseteq \mathcal{D}'$ (as $\mathcal{A}$ is a $\pi$-system). $\mathcal{D}'$ is in fact a $d$-system ($B \in \mathcal{A}$, then for any $A \in \mathcal{A}$, $B \cap A \in \mathcal{A}$ as $\mathcal{A}$ is a $\pi$-system, hence $B \in \mathcal{D}$). Fix $A \in \mathcal{A}$. \begin{itemize} \item Then $E \cap A = A \in \mathcal{A} \subseteq \mathcal{D}$. So $E \in \mathcal{D}'$. \item If $B_1 \subseteq B_2$, and $B_1, B_2 \in \mathcal{D}'$, then $(B_2 \setminus B_1) \cap A = (B_2 \cap A) \setminus (B_1 \cap A) \in \mathcal{D}$. But by definition, as $B_1, B_2 \in \mathcal{D}'$, we get $B_1 \cap A, B_2 \cap A \in \mathcal{D}$. Also, $B_1 \cap A \subseteq B_2 \cap A$ and $\mathcal{D}$ is a $d$-system, so $(B_2 \cap A) \setminus (B_1 \cap A) \in \mathcal{D}$. So $(B_2 \setminus B_1) \cap A \in \mathcal{D}$, i.e. $B_2 \setminus B_1 \in \mathcal{D}'$. \item Finally, if $\{B_n\} \in \mathcal{D}'$ and $B_n \uparrow B = \bigcup_n B_n$, then $B_n \cap A \in \mathcal{D}$ and $(B_n \cap A) \uparrow (B \cap A)$ and $\mathcal{D}$ is a $d$-system, so $B \cap A \in \mathcal{D}$. So $B \in \mathcal{D}'$. \end{itemize} So $\mathcal{D}'$ is a $d$-system. Also, $\mathcal{D}' \subseteq \mathcal{D}$. But also, $\mathcal{A} \subseteq \mathcal{D}'$ and $\mathcal{D}'$ is a $d$-system, so $\mathcal{D} \subseteq \mathcal{D}'$ (by minimality of $\mathcal{D}$). So $\mathcal{D} = \mathcal{D}'$, i.e. for all $B \in \mathcal{D}$ and $A \in \mathcal{A}$, $B \cap A \in \mathcal{D}$ ($*$). Now we can repeat this argument one level higher. Define \[ \mathcal{D}'' = \{B \in \mathcal{D} : B \cap A \in \mathcal{D} ~\forall A \in \mathcal{D}\} \] Then $\mathcal{A} \subseteq \mathcal{D}''$ (by ($*$)). Then check, as before, that $\mathcal{D}''$ is a $d$-system. So $\mathcal{D}'' = \mathcal{D}$. But then (by the definition of $\mathcal{D}''$), $\forall B \in \mathcal{D}$, $A \in \mathcal{D} \implies B \cap A \in \mathcal{D}$, i.e. $\mathcal{D}$ is a $\pi$-system. So $\mathcal{D}$ is a $\sigma$-algebra containing $\mathcal{A}$, hence $\mathcal{D} \supseteq \sigma(\mathcal{A})$ (check that $\emptyset \in \mathcal{D}$). } \end{proof} \end{flashcard} Now we get the \emph{uniqueness theorem}. \begin{flashcard}[uniqueness-of-extension-thm] \begin{theorem*}[Uniqueness of Extension] \refstepcounter{customtheorem} \label{uniqueness_thm} \cloze{ Let $\mu_1$, $\mu_2$ be some measures on $(E, \mathcal{E})$ with $\mu_1(E) = \mu_2(E) < \infty$. Suppose that $\mu_1 = \mu_2$ on $\mathcal{A}$ for some $\pi$-system $\mathcal{A}$ that generates $\mathcal{E}$ (i.e. $\sigma(\mathcal{A}) = \mathcal{E}$). Then $\mu_1 = \mu_2$ on $\mathcal{E}$. } \end{theorem*} \end{flashcard} \begin{proof} Consider $\mathcal{D} = \{A \in \mathcal{E} : \mu_1(A) = \mu_2(A)\}$. Then, by hypothesis, $\mathcal{A} \subseteq \mathcal{D}$. Also, $\mathcal{A}$ is a $\pi$-system. So enough to show that $\mathcal{D}$ is a $d$-system (by \nameref{dynkins_lemma}, $\sigma(\mathcal{A} = \mathcal{E} \subseteq \mathcal{D} \subseteq \mathcal{E}$, so $\mathcal{D} = \mathcal{E}$). \begin{itemize} \item $\emptyset \in \mathcal{D}$ since $\mu_1(\emptyset) = \mu_2(\emptyset) = 0$. \item $A \in \mathcal{D} \implies \mu_1(A) = \mu_2(A)$. So $\mu_1(A^c) = \mu_1(E) - \mu_1(A) = \mu_2(E) - \mu_2(A) = \mu_2(A^c)$. So $A^c \in \mathcal{D}$. \item $\{A_n\} \in \mathcal{D}$ disjoint, then $\mu_1 \left( \bigcup_n A_n \right) = \sum \mu_1(A_n) = \sum \mu_2(A_n) = \mu_2 \left( \bigcup_n A_n \right)$. So $\bigcup_n A_n \in \mathcal{D}$. \end{itemize} So $\mathcal{D}$ is a $d$-system. \end{proof} % \begin{remark*} % If $A_n \uparrow A$, then $\mu(A) = \lim_{n \to % \infty} \mu(A_n)$. Use this to show % $\mathcal{D}$ is a $d$-system satisfying % ($+$). % \end{remark*} \textbf{Question:} How to show all sets of a $\sigma$-algebra $\mathcal{E}$ generated by $\mathcal{E}$ has a certain property $\mathcal{P}$? \[ \mathcal{G} = \{A \subseteq E : \text{$A$ has the property $\mathcal{P}$}\} \] and all elements of $\mathcal{A}$ has the property $\mathcal{P}$. Possible methods: \begin{enumerate}[(1)] \item Show that $\mathcal{G}$ is a $\sigma$-algebra. \item Show that $\mathcal{G}$ is a $d$-system and $\mathcal{A}$ is a $\pi$-system, and use \nameref{dynkins_lemma}. \item MCT (monotone convergence theorem?) \end{enumerate} \begin{flashcard}[Borel-set-defn] \begin{definition*}[Borel Sets] \cloze{ Let $E$ be a Hausdorff topological space. The $\sigma$-algebra generated by the set of open sets, i.e. $\sigma(\mathcal{A})$ where $\mathcal{A} = \{A \subseteq E : \text{$\mathcal{A}$ open}\}$ is called the \emph{Borel $\sigma$-algebra} $\mathcal{B}(E)$ of $E$. $\mathcal{B}(\RR)$ is written as $\mathcal{B}$. A measure $\mu$ on $(E, \mathcal{B}(E))$ is called a \emph{Borel measure} on $E$. If $\mu(K) < \infty$ for all $K$ compact, then $\mu$ is called a \emph{Radon} measure on $E$. If $\mu(E) = 1$, $\mu$ is called a \emph{probability measure} on $E$, and $(E, \mathcal{E}, \mu)$ is called a probability space (usually use $(\Omega, \mathcal{F}, \PP)$). If $\mu(E) < \infty$, $\mu$ is a finite measure on $E$. If $\exists (E_n)$ in $\mathcal{E}$ such that $\mu(E_n) < \infty$ for all $n$ and $E = \bigcup_n E_n$, then $\mu$ is called a \emph{$\sigma$-finite measure} (the \nameref{uniqueness_thm} holds for $\sigma$-finite measures). } \end{definition*} \end{flashcard}