%! TEX root = PM.tex % vim: tw=50 % 23/11/2023 10AM \begin{proposition*} Let $(X_n)$ be independent with $\EE X_n = \mu$ and $\EE X_n^4 \le M$ for all $n$. Then \[ \frac{S_n}{n} \to \mu \] \gls{al_surely} as $n \to \infty$ (where $S_n = X_1 + \cdots + X_n$). \end{proposition*} \begin{proof} Let $X_n' = X_n - \mu$. Then \[ \EE X_n'^4 \le 2^4(\EE X_n^4 + \mu^4) \le \ub{2^4(M + \mu^4)}_{=M'} \qquad \forall n .\] So we assume that $\mu = 0$ (without loss of generality). Then using independence, for distinct indices $i, j, k, l$, \[ 0 = \EE(X_i X_j^3) = \EE(X_i X_j X_k^2) = \EE(X_i X_j X_k X_l) \] Hence, \begin{align*} \EE(S_n^4) &= \EE(X_1 + \cdots + X_n)^4 \\ &= \EE \left( \sum_{1 \le i \le n} X_i^4 + 6 \sum_{1 \le i < j \le n} X_i^2 X_j^2 \right) \\ &\le nM + 6\frac{n(n - 1)}{2} \\ &\le nM + 3n(n - 1) \\ &\le 3n^2 M \end{align*} But \[ \EE(X_i^2 X_j^2) \stackrel{\text{C-S}}{\le} \sqrt{\EE X_i^4 X_j^4} \le M ,\] i.e. \[ \EE \left( \left( \frac{S_n}{n} \right)^4 \right) \le \frac{3M}{n^2} \] Now, \[ \EE \left( \sum_{n = 1}^\infty \left( \frac{S_n}{n} \right)^4 \right) \stackrel{\text{\nameref{mconv_thm}}}{=} \sum_{n = 1}^\infty \EE \left( \frac{S_n}{n} \right)^4 \le \sum_n \frac{3M}{n^2} < \infty .\] So, \[ \sum_{n = 1}^\infty \left( \frac{S_n}{n} \right)^4 < \infty \] \gls{al_surely}. Hence $\left( \frac{S_n}{n} \right)^4 \to 0$ \gls{al_surely}, i.e. $\frac{S_n}{n} \to 0$ \gls{al_surely}. \end{proof} \newpage \section{Ergodic Theory} \begin{flashcard}[measure-preserving-defn] \begin{definition*}[Measure preserving map] \glsadjdefn{mp}{measure preserving}{map} \cloze{Let $(E, \mathcal{E}, \mu)$ be a $\sigma$-finite measure space. A measurable map $\theta : E \to E$ is called ($\mu$-)measure-preserving (m.p.) if \[ \mu \circ \theta^{-1} = \mu ,\] i.e. $\mu(\theta^{-1}(A)) = \mu(A)$ for all $A \in \mathcal{E}$. In this case, for all $f \in \Lp[1]$, \[ \int_E f \dd \mu = \int_E f \circ \theta \dd \mu = \int f \dd \mu \circ \theta^{-1} \]} \end{definition*} \end{flashcard} \begin{flashcard}[theta-invariant] \begin{definition*}[$\theta$-invariant] \glsadjdefn{tinv}{$\theta$-invariant}{set} \cloze{A set $A \in \mathcal{E}$ is \emph{$\theta$-invariant} if $\theta^{-1}(A) = A$.} \end{definition*} \end{flashcard} \begin{flashcard}[theta-invariant-f-defn] \begin{definition*}[$\theta$-invariant function] \glsadjdefn{tinv_fn}{$\theta$-invariant}{function} \cloze{A measurable function $f$ is \emph{$\theta$-invariant} if $f = f \circ \theta$.} \end{definition*} \end{flashcard} \vspace{-1em} The space of all \gls{tinv} sets $\mathcal{E}_\theta$ is a \sigalg{} and $f$ is \gls{tinv_fn} if and only if $f$ is $\mathcal{E}_\theta$-measurable (exercise on \es{4}). \begin{flashcard}[ergodic-map-defn] \begin{definition*}[Ergodic map] \glsadjdefn{ergodic}{ergodic}{map} \cloze{The map $\theta$ is called \emph{ergodic} if $\mathcal{E}_\theta$ is $\mu$-trivial, i.e. $\forall A \in \mathcal{E}_\theta$, $\mu(A) = 0$ or $\mu(A^c) = 0$. ``well-mixed''.} \end{definition*} \end{flashcard} \vspace{-1em} Boltzman (1880) Ergodic hypothesis for dynamical systems \begin{center} \includegraphics[width=0.6\linewidth]{images/25f3edf71d4947c4.png} \end{center} ``space filling''. For Markov chains, ergodicity $\iff$ irreducibility. \textbf{Fact:} If $f : E \to \RR$ is \gls{tinv_fn}, $\theta$ Is \gls{ergodic} if and only if $f = c$, a constant, \gls{al_surely} (exercise on \es{4}). ($\mu(f^{-1}(-\infty, x)) = 0$ or $\mu(f^{-1}[x, \infty)) = 0$). \begin{example*} On $((0, 1], \mathcal{B}, \lambda_{(0, 1]})$ the maps \begin{enumerate}[(1)] \item $\theta_a(x) = x + a \pmod{1}$ (rotation of a circle). \item $\theta(x) = 2x \pmod{1}$ \end{enumerate} are \gls{mp} and \gls{ergodic} unless $a \in \QQ$ (see \es{4}). \end{example*} \begin{theorem*}[Birkhoff's ergodic theorem (1931)] SUppose $(E, \mathcal{E}, \mu)$ is $\sigma$-finite and $f \in \Lp[1](E, \mathcal{E}, \mu)$ and $\theta : E \to E$ \gls{mp}. Define $S_0 = 0$ and \[ S_n = S_n(f) = f + f \circ \theta + f \circ \theta^2 + \cdots + f \circ \theta^{n - 1} .\] Then there exists a \gls{tinv_fn} function $\ol{f}$ with $\mu(|\ol{f}|) \le \mu(|f|)$ such that $\frac{S_n(f)}{n} \to \ol{f}$ \gls{al_ev} as $n \to \infty$. \end{theorem*} \begin{remark*} If $\theta$ is \gls{ergodic}, $\ol{f} = c$ \gls{al_ev}. \end{remark*} \begin{lemma*}[Maximal ergodic theorem] For $f \in \Lp[1](\mu)$, set $S^* = S^*(f) = \sup_{n \ge 0} S_n(f)$. Then \[ \int_{\{S^* > 0\}} f \dd \mu \ge 0 .\] \end{lemma*} \begin{proof} Set $S_n^* = \max_{0 \le m \le n} S_m$. Then for $m = 1, 2, \ldots, n + 1$, \[ S_m = f + S_{m - 1} \circ \theta \le f + S_n^* \circ \theta \] (as for $m = 1, \ldots, n + 1$, $S_{m - 1} \le S_n^*$, hence $S_{m - 1} \circ \theta \le S_n^* \circ \theta$). On $A_n \defeq \{S_n^* > 0\}$, we have \[ S_n^* = \max_{1 \le m \le n} S_m \le \max_{1 \le m \le n + 1} S_m \le f + S_n^* \circ \theta \] So integrating, \[ \int_{A_n} S_n^* \dd \mu \le \int_{A_n} f \dd \mu + \int_{A_n} S_n^* \circ \theta \dd \mu \tag{1} \label{lec22_l172_eq} \] On $A_n^c$, we have $S_n^* = 0 \le S_n^* \circ \theta$ (as $S_n^* \ge 0$ since $S_0 = 0$). Thus, \[ \int_{A_n^c} S_n^* \dd \mu \le \int_{A_n^c} S_n^* \circ \theta \dd \mu \tag{2} \label{lec22_l177_eq} \] Then \eqref{lec22_l172_eq} + \eqref{lec22_l177_eq} gives \[ \int_E S_n^* \dd \mu \le \int_{A_n} f \dd \mu + \int_E S_n^* \circ \theta \dd \mu\] i.e. \[ \int S_n^* \dd \mu \le \int_{A_n} f \dd \mu + \int S_n^* \dd \mu \] Hence, (as $S_n^* \in \Lp[1]$), $\int_{A_n} f \dd \mu \ge 0$ ($*$) for all $n$. \[ A_n = \{S_n^* > 0\} = \{\max_{0 \le m \le n} S_m > 0\} = \bigcup_{m = 0}^n \{S_m > 0\} \uparrow \bigcup_{m = 0}^\infty \{S_m > 0\} = \{\ub{\sup S_m}_{=S^*} > 0\} .\] Hence $f \indicator{A_n} \to f\indicator{(S^* > 0)}$. Hence (as $|f \indicator{A_n}| \le |f|$ and $f \in \Lp[1]$) by \nameref{dct} (and using ($*$)), \[ 0 \le \int_{A_n}f \dd \mu \to \int_{(S^* > 0)} f \dd \mu \] Hence $\int f \dd \mu \ge 0$. \end{proof} \begin{remark*} Let $\mu$ be a finite measure. Then for $f \in \Lp[1]$ and any $\alpha > 0$, define $\ol{S_k} = \frac{S_k(f)}{k}$ and $\ol{S}^* = \sup_{k \ge 0} \ol{S_k}$, then \[ \ub{\mu(\ol{S}^* > \alpha)} _{\mu(\ub{\sup_{k \ge 0} \ol{S_k}}_{\ge S_1 = f} > \alpha)} \le \frac{1}{\alpha} \int_{\{\ol{S}^* > \alpha\}} f \dd \mu \le \frac{1}{\alpha} \int |f| \dd \mu \] \begin{proof} Exercise. \end{proof} $\mu(f > \alpha) \le \frac{\int |f| \dd \mu}{\alpha}$ is Markov. \end{remark*} \begin{remark*} For $\mu$ a probability maesure and $f \in \Lp[1](\mu)$, show that $\left\{ \frac{S_n(f)}{n} : n \in \NN \right\}$ is \gls{ui} (exercise). Hence $\frac{S_n(f)}{n} \stackrel{\Lp[1]}{\longrightarrow} \ol{f}$. If $\theta$ \gls{ergodic}, $\ol{f} = \int f \dd \mu$ \gls{al_surely}. \end{remark*}