%! TEX root = PM.tex % vim: tw=50 % 18/11/2023 10AM \begin{proof} First assume $f \in \Lp[1]$ with $\ft{f} \in \Lp[1]$. Then $(x, u) \mapsto f(x)\ft{f}(u)$ is $\dd x \dd u$-integrable. So \begin{align*} (2\pi)^d \|f\|_2^2 &= (2\pi)^d \int f(x) \ol{f}(x) \dd x \\ &= \iint \ft{f}(u) e^{-i\langle x, u\rangle} \ol{f}(x) \dd u \dd x < \infty &&\text{(\gls{FI}, and $f \in \Lp[2]$)} \\ &= \int \ft{F}(u) \ol{\left( \int \ub{f(x) e^{i\langle x, u\rangle}}_{\ft{f}(u)} \right)} \dd u &&\text{(\nameref{fubini_tonelli})} \\ &= \int \ft{f} (u) \ol{\ft{f}(u)} \dd u &&\text{(\gls{FT})} \\ &= \normp\|\ft{f}\|_2^2 \label{lec20_l22_eq} \tag{$*$} \end{align*} (Note: $f \in \Lp[1]$ and $\ft{f} \in \Lp[1]$ implies $f \in \Lp[2] \cap \Lp[\infty]$). Now, let $f \in \Lp[1] \cap \Lp[2]$. For $t > 0$, take $f_t = f \conv \gt \stackrel{t \to \infty}{\longrightarrow} f$ in $\Lp[2]$ and so \[ \normp\|f_t\|_2 \stackrel{t \to 0}{\longrightarrow} \normp\|f\|_2 \label{lec20_l30_eq} \tag{$**$} .\] Also, \[ |\ft{f_t}(u)| = |\ft{f}(u) \ft{\gt}(u)| = |\ft{f}(u)| e^{-t \frac{|u|^2}{2}} \uparrow |\ft{f}(u)| \] as $t \to 0$. \[ \normp\|\ft{f_t}\|_2^2 = \int |\ft{f_t}(u)|^2 \dd u \stackrel{t \to 0}{\longrightarrow} \int |\ft{f}(u)|^2 \dd u = \normp\|\ft{f}\|_2^2 \label{lec20_l40_eq} \tag{\dag} \] by \nameref{mconv_thm} But, $f_t = f \conv \gt \in \Lp[1]$, and $\ft{f_t} \in \Lp[1]$. So by \eqref{lec20_l22_eq}, $(2\pi)^d \normp\|f_t\|_2^2 = \normp\|\ft{f_t}\|_2^2$. Let $t \to 0$, then $\LHS \to (2\pi)^d \normp\|f\|_2^2$ by \eqref{lec20_l30_eq}, and $\RHS \to \normp\|\ft{f}\|_2^2$ by \eqref{lec_20_l40_eq}. Hence $(2\pi)^d \normp\|f\|_2^2 = \normp\|\ft{f}\|_2^2$. Similar proof for $\langle f, g \rangle$. \end{proof} \subsubsection*{Characteristic functions, weak convergence and the CLT} \[ \cf_X(t) = \EE(e^{itX}) = \ft{\mu_X} = \int e^{i\langle t, x\rangle} \dd \mu_X(x) \] For dirac measure $\delta_0$, $\ft{\delta_0} = \int e^{itx} \dd \delta_0(x) = 1$ not integrable on $\RR$ so \gls{FI} does not make sense. To circumvent this, we `test' $\mu$ on nice test functions $f$. \begin{remark*} \phantom{} \begin{enumerate}[(1)] \setcounter{enumi}{-1} \item 2 probability measures $\mu$ and $\nu$ on $\RR^d$ coincide if and only if \[ \int f \dd \mu = \int f \dd \nu \label{lec20_l71_eq} \tag{$*$} \] for all $f ;: \RR^d \to \RR$ bounded continuous (\es{2}). In fat, enough to have \eqref{lec20_l71_eq} holds for all $f \in \cptinf$ \glssymboldefn{cptinf}{$C_c^\infty$}{$C_c^\infty$} (space of infinitely differentiable functions with compact support). ($\mu : \cptinf \to \RR, f \mapsto \mu(f)$ linear, continuous (Lf top), hence $\mu$ is ``Schwarz distribution'' $\mathcal{A} \circ f$, $\mu \in (\cptinf)^*$). \end{enumerate} \end{remark*} \begin{flashcard}[conv-wly-defn] \begin{definition*}[Converges weakly] \glsverbdefn{conv_wly}{weakly}{probability measure} \cloze{ Let $(\mu_n)$, $\mu$ be Borel probability measures on $\RR^d$. Then \emph{$\mu_n$ converges to $\mu$ weakly} if \[ \int f \dd \mu_n \stackrel{n \to \infty}{\longrightarrow} \int f \dd \mu \label{lec20_l92_eq} \tag{$*$} \] for all $f : \RR^d \to \RR$ bounded and continuous. } \end{definition*} \end{flashcard} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item \glsadjdefn{vc_wly}{weakly}{random variables converging} For a sequence of random variables $(X_n)$ and $X$ another random variable, $X_n \to X$ weakly if $\mu_{X_n} \to \mu_X$ \gls{conv_wly}. \item A sequence $(\mu_n)$ can have at most one weak limit (by Remark (0)). \item If $X_n \to X$ \gls{vc_wly}, and $h : \RR^d \to \RR^k$ is continuous, then $h(X_n) \to h(X)$ \gls{vc_wly} (as random variables in $\RR^k$) (continuous mapping theorem) (from definition as $f \circ h$ bounded continuous if $f$ bounded continuous). \item \refsteplabel[Remark (4)]{lec20_Cc_infty_remark} Sufficient to check \eqref{lec20_l92_eq} for all $f \in \cptinf$ (``tightness'' argument, i.e. there exists $K$ compact such that $\mu_n(K^c) < \eps$ for all $n$ if $\mu_n \to \mu$ \gls{conv_wly}, see \es{4}). \item When $d = 1$, this is equivalent to $X_n \to \convdist X$ (i.e. $F_{X_n}(x) \to F_X(x)$ at all points where $x \mapsto F_X(x)$ is continuous). (\es{4}) $\RR^d$, $F(x_1, \ldots, x_d) = \PP(x \le (x_1, \ldots, x_d))$. \end{enumerate} \end{remark*} \begin{flashcard}[ft-of-rv-meas-determined-by-cf-thm] \begin{theorem*} Let $X$ be a random variable on $\RR^d$. Then $\mu_X$ is uniquely determined by $\ft{\mu_X} = \cf_X$. Further, if $\cf_X \in \Lp[1]$, then $\mu_X$ has a bounded continuous pdf given by \[ f(x) \defeq \frac{1}{(2\pi)^d} \int \cf_X(u) e^{-i\langle x, u\rangle} \dd u .\] \end{theorem*} \begin{proof} \cloze{ Take $Z \sim \normaldist(0, I_d)$ independent of $X$. Thus $\sqrt{t} Z$ has pdf $\gt$ and $X + \sqrt{t} Z$ has pdf $\mu_X \conv \gt \eqdef f_t$. Then \[ \ft{f_t}(u) = \ft{\mu_X}(u) \ft{\gt}(u) = \cf_X(u) e^{-t \frac{|u|^2}{2}} .\] So by \gls{FI} of \gls{gconv}, \[ f_t(x) = \frac{1}{(2\pi)^d} \int \cf_X(u) e^{-t \frac{|u|^2}{2}} e^{-i\langle u, x\rangle} \dd u \qquad \forall x \] i.e. $f_t$ is uniquely determined by $\cf_X$. Now for any $g$ bounded continuous, $g : \RR^d \to \RR$, as $t \to 0$, \[ \int g(x) f_t(x) \dd x = \EE(g(x + \sqrt{t} Z)) \stackrel{\text{BCT}}{\longrightarrow} \EE(g(X)) = \int g(x) \mu_X(\dd x) \label{l20_l160_eq} \tag{$*$} \] i.e. $\int g(x) \dd \mu_X$ is uniquely determined by $\cf_X$. Hence $\mu_X$ is uniquely determined by $\cf_X$ (Remark (0)). If $\cf_X \in \Lp[1]$, then \[ \cf_X(u) e^{-t \frac{|u|}{2}} e^{-i\langle u, x\rangle} \stackrel{t \to 0}{\longrightarrow} \cf_X(u) e^{-i\langle u, x\rangle} \] By \nameref{dct}, $f_t(x) \stackrel{t \to 0}{\longrightarrow} f_X(t)$ for all $x$. In particular, $f_X(x) \ge 0$ for all $x$ and $|f_t(x)| \le \frac{1}{(2\pi)^d} \normp\|\cf_X\|_1$. Then for any $g$ bounded continuous with compact support, \[ \int \ub{g(x) f_t(x)}_{\to g(x) f_X(x)} \dd x \stackrel{\text{\nameref{dct}}}{\longrightarrow} \int g(x) f_X(x) \dd x \] Also, $\LHS \to \int f(x) \mu_X(\dd x)$ from \eqref{l20_l160_eq}. So \[ \int g(x) \mu_X(\dd x) = \int g(x) f_X(x) \dd x \qquad \] for all $g$ bounded continuous with compat support. Hence $\mu_X$ has density $f_X$ (Remark (0)).} \end{proof} \end{flashcard} \begin{flashcard}[levy-thm] \begin{theorem*}[Levy] \label{levy_thm} \cloze{ Let $(X_n)$, $X$ be random variables on $\RR^d$ with $\cf_{X_n}(u) \to \cf_X(u)$ for all $u$ as $n \to \infty$. Then $X_n \to X$ \gls{vc_wly}.} \end{theorem*} \end{flashcard} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item Levy's continuous theorem states that if $\cf_{X_n}(u) \to \phi(u)$ for all $u$ for some function $\phi$ that is continuous in a neighbourhood of 0, then $\phi$ is the \gls{char_func} of some random variable $X$ and $X_n \to X$ \gls{vc_wly}. \item \refsteplabel[Cram\'er Wold device]{Cramer_Wold} Cram\'er Wold device: Let $(X_n)$, $X$ be random variables on $\RR^d$, then $X_n \to X$ \gls{vc_wly} if and only if \[ \langle u, X_n \rangle \stackrel{\text{\gls{vc_wly}}}{\longrightarrow} \langle u, X \rangle \qquad \forall u \in \RR^d \] (hence $\cf_{X_n}(u) \to \cf_X(u)$ by BCT and Levy). \end{enumerate} \end{remark*}