%! TEX root = PM.tex % vim: tw=50 % 07/10/2023 10AM \begin{flashcard}[set-function-defn] \begin{definition*}[Set-function] Let $\mathcal{A}$ be any collection of subsets of $E$\cloze{ such that $\emptyset \in \mathcal{A}$. A \emph{set-function} $\mu$ is a map $\mu : \mathcal{A} \to [0, \infty]$ such that $\mu(\emptyset) = 0$. We say} \begin{enumerate}[(1)] \item \cloze{$\mu$ is \emph{increasing} if $\mu(A) \le \mu(B)$ for all $A, B \in \mathcal{A}$ such that $A \subset B$.} \item \cloze{$\mu$ is \emph{additive} if $A\mu(A \cup B) = \mu(A) + \mu(B)$ for all $A, B \in \mathcal{A}$ with $A$, $B$ \fcemph{disjoint}.} \item \cloze{$\mu$ is \emph{countably additive} if $\mu \left( \bigcup_n A_n \right) = \sum_n \mu(A_n)$ for all $A_n$ disjoint such that $A_n, \bigcup_n A_n \in \mathcal{A}$.} \item \cloze{$\mu$ is \emph{countably subadditive} if $\mu \left( \bigcup_n A_n \right) \le \sum_n \mu(A_n)$ for all $A_n, \bigcup_n A_n \in \mathcal{A}$.} \end{enumerate} \end{definition*} \end{flashcard} \begin{remark*} \hypertarget{countably-additive-remark}{If} $\mu$ is a \emph{countably additive} set function on $\mathcal{A}$, and $\mathcal{A}$ \emph{is a ring}, then $\mu$ satisfies (Example Sheet 1) all of (1), (2), (3), (4). \end{remark*} \begin{flashcard}[caratheodory-thm] \begin{theorem*}[Caratheodory] \cloze{ Let $\mathcal{A}$ be a \emph{\fcemph{ring of subsets of}} $E$ and $\mu : \mathcal{A} \to [0, \infty]$ be a \fcemph{countably additive} set function on $\mathcal{A}$. Then $\mu$ \fcemph{extends to a measure} on $\sigma(\mathcal{A})$. } \end{theorem*} \end{flashcard} \begin{proof} For any $B \subseteq E$, define \[ \mu^*(B) = \inf\left( \left\{ \sum \mu(A_i) : B \subseteq \bigcup_i A_i, A_i \in \mathcal{A} \right\} \cup \{\infty\} \right) \] Clearly $\mu^*(\phi) = 0$ and $\mu^*$ is increasing. So $\mu^*$ is an increasing set function on $\mathcal{P}(E)$. Call a set $A \subset E$ $\mu^*$ measurable if $\forall B \subseteq E$, \[ \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c) .\] Define $\mathcal{M} = \{A \subset E : \text{$A$ is $\mu^*$ measurable}\}$. Shall show $\mathcal{M}$ is a $\sigma$-algebra that contains $\mathcal{A}$, $\mu^* |_\mathcal{M}$ is a measure on $\mathcal{M}$ that extends $\mu$ (i.e. $\mu^* |_{\mathcal{A}} = \mu$). Step 1: $\mu^*$ is countably subadditive, i.e. if $B \subseteq \bigcup_n B_n$, will show $\mu^*(B) \le \sum_n \mu^*(B_n)$. Nothing to prove if $\mu^*(B_n) = \infty$ for some $n$. Sow assume $\mu^*(B_n) < \infty$ for all $n$. For all $\eps > 0$, there exists $(A_{n, m}) \in \mathcal{A}$ such that $B_n \subset \bigcup_m A_{n, m}$ and $\mu^*(B_n) + \frac{\eps}{2^n} \ge \sum_m \mu(A_{n, m})$. But then, $B \subseteq \bigcup_n B_n \subseteq \bigcup_{n, m} A_{n, m}$ and $(A_{n, m}) \in \mathcal{A}$, so by definition of $\mu^*$, \[ \mu^*(B) \le \sum_n \sum_m \mu(A_{n, m}) \le \sum_n \left( \mu^*(B_n) + \frac{\eps}{2^n} \right) = \sum_n \mu^*(B_n) + \eps \] As $\eps > 0$ is arbitrary, we get the desired result. Step 2: $\mu^*$ extends $\mu$, i.e. for all $A \in \mathcal{A}$, $\mu^*(A) = \mu(A)$. ($\mu^*(A) \le \mu(A)$ by definition of $\mu^*$ as $A \subseteq A$, $A \in \mathcal{A}$). Now we prove $\mu^*(A) \ge \mu(A)$. As $\mu$ is countably additive on $A\mathcal{A}$ and $\mathcal{A}$ is a ring, $\mu$ is countably sub-additive on $\mathcal{A}$ and increasing (by \hyperlink{countably-additive-remark}{earlier Remark}). Now, let $A \subset \bigcup_n (A \cap A_n)$, so by countable sub-additivity on $\mathcal{A}$, \[ \mu(A) \le \sum_n \mu(A \cap A_n) \le \sum_n \mu(A_n) \] (the second inequality is because $\mu$ is increasing). So by taking $\inf$ over all such $\{A_n\}$, $\mu(A) \le \mu^*(A)$. Step 3: $M \supseteq A$, i.e. $A \in \mathcal{A}$ and $B \subseteq E$, want to show \[ \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c) \] Since $B \subseteq (B \cap A) \cup (B \cap A^c)$, by Step 1 (countable sub additivity), $\mu^*(B) \le \mu^*(B \cap A) + \mu^*(B \cap A^c)$. To prove $\mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \cap A^c)$, without loss of generality assume $\mu^*(B) < \infty$. So again $\forall \eps > 0$, there exists $(A_n) \in \mathcal{A}$ with $B \subseteq \bigcup_n A_n$ such that $\mu^*(B) + \eps \ge \sum_n \mu(A_n)$. Then $(B \cap A) \subseteq \bigcup_n (A_n \cap A)$ and $(B \cap A^c) \subseteq \bigcup_n (A_n \cap A^c)$. So that \[ \mu^*(B \cap A) \le \sum \mu(A_n \cap A) \qquad \text{and} \qquad \mu^*(B \cap A^c) \le \sum_n \mu(A_n \cap A^c) ,\] so that \[ \mu^*)B \cap A) + \mu^*(B \cap A^c) \le \sum_n (\mu(A_n \cap A) + \mu(A_n \cap A^c)) = \sum \mu(A_n) \le \mu^*(B) + \eps \] As $\eps > 0$ is arbitrary, we get $\mu^*(B \cap A) + \mu^*(B \cap A^c) \le \mu^*(B)$. Step 4: $\mathcal{M}$ is an algebra: $\phi \in M$. Also if $A \in \mathcal{M}$, then $A^c \in \mathcal{M}$. Now let $A_1, A_2 \in \mathcal{M}$ and $B \subset E$. Then \begin{align*} \mu^*(B) &= \mu^*(B \cap A_1) + \mu^*(B \cap A_1^c) &&\text{(as $A_1 \in \mathcal{M}$)} \\ &= \mu^*(B \cap A_1 \cap A_2) = \mu^*(B \cap A_1 \cap A_2^c) + \mu^*(B \cap A_1^c) &&\text{(as $A_2 \in \mathcal{M}$)} \\ &= \mu^*(B \cap (A_1 \cap A_2)) + \mu^*(B \cap (A_1 \cap A_2)^c \cap A_1) + \mu^*(B \cap (A_1 \cap A_2)^c \cap A_1^c) \\ &= \mu^*(B \cap (A_1 \cap A_2)) + \mu^*(B \cap (A_1 \cap A_2)^c) &&\text{(as $A_1 \in \mathcal{M}$, $B \cap (A_1 \cap A_2)^c = \tilde{B}$)} \end{align*} So $A_1 \cap A_2 \in \mathcal{M}$. Step 5: $\mathcal{M}$ is a $\sigma$-algebra and $\mu^* |_{\mathcal{M}}$ is a measure (since $\mathcal{M}$ is an algebra, convince yourself), i.e. for any sequence $(A_n) \in \mathcal{M}$ with $A_n$ pairwise disjoint, we want to prove $A \defeq \bigcup_n A_n \in \mathcal{M}$ and $\mu(A) = \sum_n \mu(A_n)$. So, as before for any $B \subseteq E$, \begin{align*} \mu^*(B) &= \mu^*(B \cap A_1) + \mu^*(B \cap A_1^c) &&\text{(as $A_1 \in \mathcal{M}$)} \\ &= \mu^*(B \cap A_1) + \mu^*(B \cap A_1^c \cap A_2) + \mu^*(B \cap A_1^c \cap A_2^c) &&\text{(as $A_2 \in \mathcal{M}$)} \\ &= \mu^*(B \cap A_1) + \mu^*(B \cap A_2) + \mu^*(B \cap A_1^c \cap A_2^c) \\ &~~~\vdots \\ &= \sum_{i = 1}^n \mu^*(B \cap A_i) + \mu^*(B \cap A_1^c \cap \cdots \cap A_n^c) \\ &\ge \sum_{i = 1}^n \mu^*(B \cap A_1) + \mu^*(B \cap A^c) \end{align*} The last inequality comes from the fact that $\mu^*$ is increasing and since $A = \bigcup_i A_i$, we have $A^c = \cap A_i^c \subseteq A_1^c \cap \cdots \cap A_n^c$. So as $n \to \infty$, \begin{align*} \mu^*(B) &\ge \sum_{i = 1}^\infty \mu^*(B \cap A_1) + \mu^*(B \cap A^c) \\ &\ge \mu^*(B \cap A) + \mu^*(B \cap A^c) \\ \end{align*} Also, \begin{align*} \mu^*(B) &\le \mu^*(B \cap A) + \mu^*(B \cap A^c) \end{align*} is obvious by sub additivity. So $\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c)$, i.e. $A \in \mathcal{M}$. \end{proof}